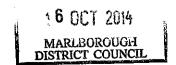


Engineering Geology Ltd consulting geotechnical, geological and earthquake engineers

Unit 7C, Rosedale Office Park, 331 Rosedale Road Albany, Auckland, New Zealand PO Box 301054, Albany, North Shore 0752


Phone: 64 9 486 2546 Fax: 64 9 486 2556

Ref: 7546

WINEGROWERS OF ARA LIMITED PROPOSED VINEYARD DEVELOPMENT WATER STORAGE POND, WAIHOPAI VALLEY RESOURCE CONSENT APPLICATION TECHNICAL REPORT

Prepared for:

Winegrowers of Ara Ltd P O Box 106306 AUCKLAND 1143 8 October 2014

Directors: Christopher P. Gulliver B.Sc, B.E. (Hons), MIPENZ, CPEng, IntPE Trevor Matuschkab.E. (Hons), Ph.D., FIPENZ, CPEng, IntPE Jeremy Yeats B.Sc (Civ Eng), DIC, M.Sc, MIPENZ, MICE, CPEng, CEng, IntPE Associate: John Power B.Sc, TIPENZ

CONTENTS

1.0	INTRODUCTION	1
2.0	SITE LOCATION AND DESCRIPTION	1
3.0	SEISMIC HAZARD	2
4.0	GEOTECHNICAL INVESTIGATIONS	2
4.1.	Test Pits	2
4.2.	Machine Boreholes	3
4.3.	Groundwater Conditions	3
4.4.	Laboratory Testing	4
4.5.	Site Soil Conditions	4
4.6.	Suitability for Pond Site	4
4.7.	Construction Materials	5
5.0	POND DESIGN	5
5.1.	Pond	5
5.2.	Breach Analysis and Potential Impact Classification	6
6.0	CONSTRUCTION	10
7.0	OPERATION, MAINTENANCE AND SURVEILLANCE	10
8.0	POTENTIAL RISKS AND MITIGATION MEASURES	10

REFERENCES

APPENDIX A	-	TEST PIT LOGS
APPENDIX B	-	MACHINE BOREHOLE LOGS
APPENDIX C	-	LABORATORY TESTING RESULTS
FIGURES 1 TO 5		

File: 7546 - Tech Report 8 Oct 2014.docx.doc

Engineering Geology Ltd

Unit 7C, Rosedale Office Park, 331 Rosedale Road Albany, Auckland, New Zealand PO Box 301054, Albany, North Shore 0752

Phone: 64 9 486 2546 Fax: 64 9 486 2556

7546

Ref:

8 October 2014

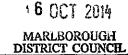
WINEGROWERS OF ARA LIMITED PROPOSED VINEYARD DEVELOPMENT WATER STORAGE POND, WAIHOPAI VALLEY RESOURCE CONSENT APPLICATION TECHNICAL REPORT

1.0 INTRODUCTION

Winegrowers of Ara are planning to develop and expand its existing vineyard located in the Waihopai Valley, Marlborough. It is understood that as part of the future development some 900ha of the farming land will be converted into vineyards. The future vineyard development will incorporate new water storage facilities for irrigation and frost protection purposes. We understand a total storage volume of up to 1,000,000m³ will be required to support the future vineyard.

The future vineyard will be developed in stages. The initial stage will include an approximately 250ha of vineyard development, which requires a pond with storage capacity of 260,000m3 to meet the vineyard water storage requirements. It will be a HDPE lined pond for the purposes of storing water to irrigate grapes and frost control.

Construction of the pond is proposed to take place in early 2015. This report describes the technical aspects of the proposed pond and is to support the applications for Resource Consents. At this stage the principal design concepts have been established and a feasibility design has been completed.


2.0 SITE LOCATION AND DESCRIPTION

The vineyard is located off SH63 in the Wairau Valley, Marlborough. The property is approximately 9km long and 2km wide and is bounded by the Waihopai River to the east and hills to the west. The northern portion of the property has already been developed and planted with vineyards. A water storage pond, Lake Pinot, was constructed in 2008 for irrigating the northern portion of the vineyard. A layout of the property is shown in the attached Figure 1 included in Appendix A.

Winegrowers of Ara are now planning to develop the southern portion of the property, south of Lake Pinot. This includes the development of some 900ha of near flat land which is currently being used for cropping. A number of central pivot irrigators are also currently in use over the proposed vineyard area. This area is generally flat, sloping very gently to the north at about 1 in 250. Elevated terraces at the toe of the hills run along the western edge of the site. The terraces are generally 200m wide and some 10 to 15m above the adjacent ground. They become narrower towards the north and taper ultimately into the hill just south of Lake Pinot.

Directors: Christopher P. Gulliver B.Sc, B.E. (Hons), MIPENZ, CPEng, InIPE Trevor Matuschkab.E. (Hons), Ph.D, FIPENZ, CPEng, IntPE Jeremy Yeats B.Sc, (Civ Eng), DIC, M.Sc, MIPENZ, MICE, CPEng, CEng, IntPE Associate: John Power B.Sc, TIPENZ

8 October 2014

Storage up to 1,000,000m³ is ultimately required to provide sufficient water for irrigation and frost protect of the proposed vineyard development. Although at this stage it is proposed to construct a water storage pond with storage capacity of 260,000m³ to meet the near future water requirements for the vineyard.

A feasibility study (Ref.1) was previously undertaken by Engineering Geology Ltd (EGL). The aim of the study was to assess the feasibility of constructing ponds at either the flat central site or at the elevated terraces located along the western edge of vineyard. The study covers four options with storage capacities of 250,000m³ and 500,000m³.

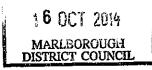
As agreed with the client (Winegrowers of Ara Ltd) that the option with the centrally located pond with storage capacities of $260,000m^3$ will be constructed in the first stage in the future vineyard development to meet the project water storage demand.

Topographical information of the site has been provided by Ayson and Partners Ltd. A site investigation, consisting of excavation of 11 test pits and drilling 4 machined boreholes, has been undertaken to develop a general geotechnical model for the site. Moreover, a number of tests have been conducted on selected samples obtained during the fieldwork. This is discussed further in the following sections.

3.0 SEISMIC HAZARD

The site is located in an area of high seismic hazard with three known active faults (Awatere, Clarence and Wairau) within 30km of the site. The closest fault is the Wairau Fault which is 3.5km north (Ref.2 GNS Active Fault Database). This fault is a strike-slip fault and is considered capable of generating up to magnitude 7.6 earthquakes with an estimated average recurrence interval of movement of between 1,100 and 1,900 years. The last major earthquake on this fault is estimated to have occurred 1,400 and 2,600 years ago (Ref.3). The proposed HDPE lined pond is formed by a homogeneous earthfill embankment where construction materials will generally be sandy gravels and cobbles with minor fines (i.e. silt and clay) and is capable of withstanding very high levels of earthquake shaking.

4.0 GEOTECHNICAL INVESTIGATIONS


A geotechnical investigation was carried out in August 2014. The investigation compromised of 11 test pits (TP1 to TP11) and 4 machine drilled boreholes (MBH1 to MBH4). The locations of the test pits and machine drilled boreholes are shown on Figure 2.

Limited laboratory testing has been carried out on selected samples of the test pits. This includes moisture content tests and particle size distribution (PSD) analysis.

No cultural or historical values were identified on site during the site walk-over inspection.

4.1. Test Pits

The test pits were excavated to depth between 0.3m-4.8m. The test pits TP1 to 9 located at the proposed pond site were excavated to depths of between 4.0-4.8m to assess to subsurface condition at the pond site. The test pits TP10 and 11 were excavated to a depth of 0.3m to confirm the depth of topsoil. Description of the

materials encounter in the tests pits are presented on the attached log sheets in Appendix A.

Subsoil conditions in test pits TP1A to 11A are summarised in Table 1 below:

TABLE 1. Materials Encountered in Test Pits	

	Geological Origin	
Topsoil (m)	Loess (m)	Glacial Outwash (m)
0.0-0.2	0.2-0.5	0.5-4.8 or greater

4.2. Machine Boreholes

The machine boreholes were undertaken by PRO-DRILL using a track mounted drill rig and the boreholes designated MBH1 to MBH4. Sonic drilling technique has been used for all boreholes. The boreholes were taken down to depths of between 10m (MBH2 and MBH3) to 15m (MBH1 and MBH4). Standard Penetration Tests (SPT's) were performed at about 1m intervals or wherever practicable over the depth of the boreholes. The SPT 'N' values were generally exceeded 50. The exceptions are in boreholes BMH2, 3 and 4 where 'N' ranges between 31 and 45 at depths shallower than 4m.

The soils were logged by Engineering Geologist on site throughout drilling. The locations of the borehole are shown on Figure 2. Descriptions of the soils encountered in the boreholes together with the SPT results are presented on the attached borehole log sheets included in Appendix B.

• A summary of the soil encountered in the machine boreholes MBH1 to MBH4 is presented in Table 2 below.

Borehole ID	Topsoil (m)	Loess (m)	Glacial Outwash (m)	Termination Depth (m)
MBH1	0.0-0.2	-	0.2-15.0	15.0
MBH2	-	0.0-0.5	0.5-10.0	10.0
MBH3	0.0-0.2	0.2-0.6	0.6-10.0	10.0
MBH4	-	0.0-0.6	0.6-15.0	15.0

TABLE 2. Materials Encountered During Drilling

4.3. Groundwater Conditions

Groundwater was not encountered in most of the machine boreholes during drilling. The exception is that groundwater level at 3.9m below the ground surface has been encountered in MBH2.

After completion of drilling, a standpipe piezometer was installed in each of the machine boreholes for monitoring groundwater levels. The piezometers were constructed with a 3.0m slotted screen. Backfill above the screen included at least

1.0m of bentonite to prevent the ingress of surface water. The piezometers were covered with a lockable metal standpipe for easy location and protection for ongoing monitoring. The most recent measured groundwater levels are presented below in Table 3 below:

	Borehole	Туре	Surface R.L. (m) (approx. only)	Termination Depth (m)	Measured Groundwater Depth (m)	Screen Depth (m)	Date of Drilling	Date of Measurement
	MBH1	Standpipe	134.2	15.0	5.22	10.0-13.0	12 Aug 2014	24 Sep 2014
	MBH2	Standpipe	135.0	10.0	5.30	3.0-7.0	13-14 Aug 2014	24 Sep 2014
	MBH3	Standpipe	135.8	10.0	5.40	3.0-7.0	14 Aug 2014	24 Sep 2014
$\bigcap_{i=1}^{n}$	MBH4	Standpipe	135.5	15.0	4.80	10.0-13.0	13 Aug 2014	24 Sep 2014

TABLE 3. Summary of Groundwater Measurement Information

Note: Water levels will fluctuate with the seasons and meteorological conditions.

4.4. Laboratory Testing

Laboratory testing was carried out on selected samples obtained from the test pits. This includes moisture content tests and particle size distribution (PSD) analysis. The results are presented in Appendix C.

Moisture content tests were conducted on 9 samples obtained from 1.0 to 3.0 depths. The test results indicate the natural moisture content varies between 4.4 and 7.6%.

The particle size test results show that the materials are sandy gravel with some cobbles and boulders and a trace of fines (i.e. less than 5%). It should be noted that the samples were screened so the clasts greater than 100mm (cobbles) were removed from the bulk samples on site during the investigation, hence they are excluded from the particle size test results. It is estimated that such cobbles make up to 20% of the materials.

4.5. Site Soil Conditions

The results of the site investigation indicate that the pond site is generally underlain by topsoil and loess up to 0.6m, which overlies deep glacial outwash gravel (clayey, silty gravel).

4.6. Suitability for Pond Site

The site consists of topsoil and loess in shallow depth (up to 0.6m) overlies dense to very dense glacial outwash gravels with SPT 'N' values mostly greater than 50. The pond will be lined with geomembrane that would provide effective containment for the pond. Any weak materials that overlie the glacial outwash gravels will be removed from beneath the upstream and downstream shoulders of the embankment.

RECEIVED 1 6 OCT 2014 MARLBOROUGH DISTRICT COUNCIL

File: 7546 - Tech Report 8 Oct 2014.docx

4.7. Construction Materials

It is considered that material excavated from the pond footprint is generally suitable for construction of the perimeter embankment. The material available for construction mainly consists of sandy gravels and cobbles with minor fines (i.e. silt or clay). The excavated material from the pond area in excess of embankment fill requirements will be placed in the waste disposal stockpile or be used for landscaping purposes. The embankment will be homogeneous earthfill structure.

Containment of water will be provided by a suitable geomembrane. Some fine grained soils may need to be sourced to provide a suitable subgrade beneath the liner to the satisfaction of the liner supplier/installer. This is necessary to prevent damage to the liner. Such materials would ideally be sourced from on-site borrow areas.

5.0 POND DESIGN

The dam will be designed in accordance with the New Zealand Society on Large Dams (NZSOLD) Dam Safety Guidelines (Ref.4) and relevant International Commission on Large Dams (ICOLD) Design Guidelines. The NZSOLD design requirements are dependent on the potential impact classification (PIC) of the dam. We have undertaken a preliminary dambreak analysis and we assess the PIC to be low based on an assessment of the consequences. The details of the dambreak analysis are discussed in more detail in Section 5.3.

5.1. Pond

The proposed layout of the pond is shown in Figure 3. The pond crest is at RL140.2. The pond is designed to store $260,000m^3$ and has a footprint area of approximately $66,100m^2$. It is approximately 270m in length and 250m in width and can pond water to a maximum depth of 7.6m. The pond is to be developed by a combination of cut and fill. The fill is to be used to construct the perimeter embankment. It will be mainly sourced from the material excavated within the pond footprint. The volume of fill required for construction is approximately $83,000m^3$. The pond is proposed to be lined with a 1.5mm thick HDPE geomembrane.

Excavation to form the pond will be approximately 3.2m below the natural ground. The maximum height of the embankment formed in the northern side of the pond is approximately 6.0m high (downstream toe to crest). The crest width of the embankment is 5m. The embankment will be formed predominantly from glacial outwash soils obtained locally. A thin layer of soils free of gravels will be placed over the embankment fill and excavated surfaces where gravels are presented to act as a cushion beneath the HDPE geomembrane. Cut and fill slopes for the pond are 2.5:1 (H:V). Typical sections through the pond are shown in Figure 4. We consider that these slopes are acceptable for a line pond, taking into account the nature of the soils (sandy gravel) used for construction and the practicality of placement of the liner.

The excavation of the pond is designed to keep the pond floor above the expected zone of groundwater fluctuation in order to avoid any adverse impact on the HDPE liner. As a contingency, a network of subsoil drains will be constructed beneath the floor of the pond both along and across the pond to intercept and divert away any seepage occurring beneath the liner.

File: 7546 - Tech Report 8 Oct 2014.docx

A piped spillway is included in the design of the pond. It consists of a 450mm diameter HDPE pipe. The level of the pipe controls the normal pond water level so that the pond has 1.2m freeboard. The pipe discharges through the wall of the embankment in the north eastern side of the pond (refer to Figure 3). Riprap will be placed at the downstream end of the pipe to dissipate energy and prevent erosion. Details of the spillway are shown on Figure 5.

An outlet pipe will be laid beneath the embankment to enable water to be withdrawn from the reservoir. The size and details of the outlet pipe will be confirmed at the detail design stage. The pipe will be installed through the northern wall of the pond as shown on Figure 3.

5.2. Breach Analysis and Potential Impact Classification

Modern dam design guidelines require assessment of the consequence of a failure. The results are used to determine the appropriate design criteria (more conservative design where consequences are greater) and to then develop appropriate dam safety management and emergency preparedness procedures.

The scenario of a breach of the proposed water storage pond assumes a hypothetical uncontrolled release of water due to a breach of the embankment forming the pond. It is hypothetical because an embankment designed, constructed and operated in accordance with modern practice would not be expected to fail. No assumptions are made about the mode of failure and it takes no account of the risk of failure, or the type of failure.

The consequences of a hypothetical breach of the Water Storage Pond and determination of the PIC have been assessed in accordance with the Building (Dam Safety) Regulations 2008 (Ref.5). This requires consideration of various effects (population at risk, environmental, economic and community recovery time). A breach of the pond would result in release of the water from the reservoir into the downstream creek.

We have assessed the consequences of a potential breach based on Washington State Department of Ecology "Dam Safety Guidelines" (Ref.6). Historic breaches of water storage dams show that earthfill embankments are much more erodible than rockfill embankments (Ref.7). The Water Storage Pond is designed to be constructed with earthfill material. Therefore we assumed a breach depth over the full height of the embankment will occur. Empirical relationships are provided for water storage dam breach analysis. Three empirical relationships have been used in this study: Froehlich (Ref.8), MacDonald and Langridge-Monopolis (Ref.7) and Bureau of Reclamation (an envelope relationship, Ref.9). The average estimated flow of these methods has been adopted. Peak discharge of 320m³/s and 340m³/s has been estimated for the sunny day condition and flood induced condition respectively.

In order to analyse the incremental effects of the hypothetical breach of the water storage pond from a flood induced breach it is necessary to establish the flow downstream of the pond in the design flood. We have estimated the peak flood flow downstream of the pond to be approximately $50m^3/s$. This assumes a catchment area of 1500 hectares. Consequently the total peak flow in a flood induced breach condition is $390m^3/s$. The flow in a sunny day failure would be slightly less (i.e. $320m^3/s$).

The flood plain immediately downstream of the pond is very wide. The average width is approximately 1500m. This is the distance measured from the unnamed creek channel on the West and the Waihopai River on the East. The original ground contour is falling gently towards the North East, i.e. falling towards the Waihopai River. The average bed-slope gradient downstream of the pond is approximately 0.008.

We estimate a breach formation time of approximately 20 minutes. This is based on the average of three empirical methods, Frohlich (Ref.10), MacDonald and Langridge-Monopolis (Ref.7) and Bureau of Reclamation (Ref.11). By taken both the breach volume of water and the breach formation time into consideration, the inundation of land downstream of the pond will only occur over a very short duration as the time to empty the pond due to a breach is estimated to be less than 60 minutes.

Theoretically the pond embankment can breach in all directions. However no matter which direction its breaches, the breach flow will flow and spread following the natural ground contour, i.e. towards the North. The estimates of flood inundation depths have been determined using both the guidance provided in the Washington State Guidelines (Ref.6) and the Manning's formula for open channel flow. The results are generally consistent. Estimates of flood inundation depths are summarised in Table 4. The results show that the flood inundation depth will be less than 0.5m when the water spreads over a width of 700m.

	Empirica	Manning's Formula				
Flood Plain Width (m)	Velocity (m/s)	Estimated Inundation Depth (m)	Velocity (m/s)	Estimated Inundation Depth (m)		
1500 (Average Flood Plain Width)	1.5	0.18	0.8-1.1	0.23-0.32		
700 (Inundation Depth is 0.5m)	1.5	0.37	1.1-1.5	0.37-0.50		

TABLE 4. Summary of Flood Inundation Depth Estimation

A time-weighted approach has been used to assess the Population at Risk (PAR). The PAR is defined as the number of people likely to be affected by inundation greater than 0.5m in depth. Criteria for assessing damage levels are defined in Table 1 of the Building (Dam Safety) Regulations 2008 (Ref.5). The only location that there will be PAR is immediately downstream of the embankment to the distance where the water is spread over a width of greater than 700m (i.e. flood inundation depth is less than 0.5m). We assume that the water will be spread out in a triangular shape and a flood width of 700m will be reached at a distance of 700m from the dam breach location. Based on this assumption, we estimate the area where PAR are present is approximately 24.5 hectare.

The area of the Vineyard downstream of the proposed dam covers an area of approximately 650 hectares. There will be both permanent employees (approximately 26) and casual employees (average of 78 over a year) working over this area. The employees could be anywhere within the 650 hectares. We have estimated the PAR using a time-weighted approach by assuming the ratio that the employee that will be presented in the zone of PAR is 24.5/650. There will be two buildings located next to the embankment but there are no other buildings located within 700m of the embankment. There will be a pump shed located next to the embankment (near the northern end) which will have 3 persons present when

1 6 OCT 2014 MARLBOROUGH DISTRICT COUNCIL

discharging water for frost protection (approximately 50 hrs every year). Another building will be located next to the embankment (near the southern end) where employees will take tea and lunch breaks. We have also considered these in the assessment of PAR. Taking into account the number and average exposure time for people in the office and working on the land, we assess the PAR to be 2 based on the Building (Dam Safety) Regulations 2008 (Ref.5).

There are some other buildings including two houses that are located beyond 1.5km downstream flood plain of the proposed pond. A method for assessing the consequences of a breach of the pond, including the risk to life is using the damage parameter 'dv' which is a product of 'd' the depth of flow above floor level and 'v' the velocity of water. The level of damage to houses can also be assessed using this method. Estimates of damage and potential hazard to life based on 'dv' are provided by Reiter (Ref.12) and Amos et al (Ref.13) and are presented in Tables 5 and 6 respectively. The 'dv' parameter is approximately 0.55 and 0.27 when the flow width reaches 700m (inundation depth less than 0.5m) and 1500m (width of the flood plain) respectively. The buildings located beyond 1.5km are only likely to be subject to minor damage and danger to life is unlikely.

In the event of a hypothetical breach of the Northern or Eastern embankment, the flow is likely to flow in the northern direction and water will flow gradually towards the Waihopai River. Eventually most of the water will enter the Waihopai River and flow under the State Highway (SH) 63 Bridge located at approximately 4.5km downstream of the embankment. The Waihopai River flows into the Wairau River 2.5km (river meandering distance) downstream of the SH63 Bridge. We have estimated the capacity of the bridge opening to be approximately 2,900 to 3,900m³/s using Manning's equation and the 1m ground contour information from Marlborough District Council (Ref.14). The bridge opening has an effective width and height of approximately 150m and 4m respectively. There are no flood data at the location of SH63 Bridge. However, the data from Marlborough District Council Floodwatch system (Ref.15) suggests that the 100 year flow in the Waihopai River at Craiglochart is approximately 1.000m^3 /s. This point is approximately 14.5km (river meandering distance) upstream of the SH63 Bridge. We estimate that the catchment of the Waihopai River in-between Craiglochart and the SH63 Bridge is approximately 6,500ha and the additional flow due to a 100 Year Rainfall from this catchment is estimated to be approximately 200m³/s. Thus the total flow at the SH63 including the peak flood-induced dam breach flow is approximately 1,600m³/s. This is much less than the estimated capacity of the bridge opening 2,900-3,900m³/s. A breach of the proposed pond will not result in overtopping of the bridge. We conclude that the peak incremental effect of a breach on the bridge will be small as the breach flow is only 30% of the 100 year flood and the combined flows can easily pass beneath the bridge. The incremental increase in flow depth due to a breach is only about 0.4m (15-20% of 100 Year flood flow depth of 2-2.4m) and the incremental increase in flow velocity is 0.45m/s (10-15% of 100 Year flood flow velocity 3.4-4.1m/s). Also the duration of a breach flow is short (less than 60 minutes). We assess the incremental effects of the flow on the SH63 Bridge Piers and abutments are likely to be only minor as the percentage increase in flow depth and velocity are both small. We assess the incremental effects of a breach flow on the environment beyond the SH63 Bridge to be minor as the additional flow from a dam breach and the total amount of volume of water released due to a hypothetical breach is small compared to the 100 year flood and the flow is fully contained within the banks of Waihopai River. It would not have significant effect on flows in the Wairau

>5.0

>7.0

River which is a further 2.5km downstream of the SH63 Bridge as the Wairau River is much bigger than the Waihopai River.

If we assume a hypothetical breach of the Western embankment, the flow is likely to flow in the unnamed creek channel located west of the pond and its flood plain. The flow will eventually reach SH63 at a distance of approximately 4.5km downstream of the embankment. The inundation depth will be similar to the breach of the Northern or Eastern embankment, i.e. approximately 0.3m. A small volume of water is likely to flow through the culvert beneath the SH63 embankment. Most water will be ponded temporarily behind the SH63 embankment and flow eastwards towards Waihopai River. The embankment associated with SH63 at this location is approximately 4m high which is significantly greater than the inundation depth of 0.3m. Therefore we assess it is highly unlikely the water will overflow SH63. Eventually most of the water will be flow into Waihopai River and flow under the SH63 Bridge.

	Damage Parameter dv (m ² /s)						
Risk for loss of life classes of houses	Small damages, small danger	Medium damages, medium danger	Total damages, very high danger				
Lightly constructed detached one family house	<1.5	1.3-2.5	>2.5				

2.0-5.0

(v>2.0m/s)

3.0-7.0

(v > 3.0 m/s)

TABLE 5. Critical Structural Damage and Loss of Life Parameters (Reitar, Ref.12)

TABLE 6. Potential Hazard (Amos et al. Ref.13)

Well Constructed

wooden houses

Brick houses, concrete

structures

dv	Potential Hazard
dv < 0.5	No danger to life
0.5 <dv<1.0< td=""><td>Some danger to life exists</td></dv<1.0<>	Some danger to life exists
dv>1.0	Danger to life significant

<2.0

(v>2.0m/s)

<3.0

(v>3.0m/s)

In summary, based on the results of the pond breach analysis we assess the PAR to be 2. We consider it is unlikely that any lives would be lost because:

- there are no permanently occupied buildings where flow depths are greater than 0.5m
- it takes some time for the maximum flow to develop and so there is some warning of a dangerous situation developing
- people at risk will only normally be present during daylight hours and would notice rising water levels and move to higher ground

Damage to residential buildings would be minimal. There is one critical or major infrastructure downstream of the pond, SH63. We assess there would only be minor damage to its major components. Environmental damage would be short-term and is assessed as minimal and community recovery time would also be minimal. On this

basis the PIC of the water storage pond is assessed to be Low based on the Building (Dam Safety) Regulations 2008.

6.0 CONSTRUCTION

It is recommended that construction be undertaken by an experienced earthworks Contractor. Construction is planned to commence in early 2015 and is expected to take approximately 6 months.

The construction of the pond will be in accordance with the New Zealand Society on Large Dams (NZSOLD) Dam Safety Guidelines (Ref. 4).

Construction Drawings and a Technical Specification will be prepared. They will detail the requirements for construction including standards for foundation preparation, earthfill compaction, drainage materials and spillway as well as quality assurance and control requirements. The Designer will undertake inspections at times to confirm critical details and to ensure design requirements are being achieved. The Contractor will be required to undertake control testing to confirm fill standards have been achieved. Independent tests will also be undertaken if necessary.

The Contractor will be required to provide means of controlling any flood flows during construction of the pond. The Contractor will be required to provide a sediment control plan prior to construction commencing. This will set out the proposed works and construction methods that will be implemented to minimise and control sediment that could enter the watercourse downstream.

Water for conditioning the fill and dust suppression will be sourced from existing irrigation facility on-site. The main potential environmental impacts from the pond construction (erosion and sediment, noise, dust) would be minimal owing to the flat terrain downstream of the pond and the relatively isolated location of the proposed pond (i.e. located well away from neighbouring properties and public roads).

7.0 OPERATION, MAINTENANCE AND SURVEILLANCE

An Operation, Maintenance and Surveillance Manual will be prepared. This will set out operational and maintenance requirements necessary to ensure the ongoing safety of the pond. Monitoring and inspections are a fundamental part of the pond safety process. These range from routine regular inspections to more comprehensive reviews at longer periods. Specific requirements in accordance with NZSOLD Guidelines, will be prepared for the pond.

8.0 POTENTIAL RISKS AND MITIGATION MEASURES

- 1. Potential risks associated with the proposed pond will be minimised by designing, constructing and operating in accordance with NZSOLD Guidelines.
- 2. Potential geotechnical risks have been investigated by comprehensive geotechnical investigations. The investigation confirmed suitable foundation conditions and identified suitable material for construction.

- 3. The site is located 3.5km from the Wairau Fault which is capable of producing large ground motions at the site. The pond will be formed by earthfill embankments and the pond will be lined with HDPE. Material for construction of the pond will be glacial outwash gravel sourced on-site. Embankment constructed from such materials has good strength and good performance when subject to earthquake ground motions.
- 4. The pond is to be lined with a HDPE geomembrane. This material has a good performance history and is compliant and capable of withstanding deformations associated with earthquake ground motions.
- 5. Sediment control measures will be required during construction to prevent and mitigate associated potential environmental effects.
- 6. Dust will be controlled by spraying dry surfaces with water. Water will also be required to condition the earthfill and this will assist in reducing the potential for dust.
- 7. Water for construction (conditioning fill and dust control) will be sourced on-site.
- 8. The pond is located on a rural property well away from occupied houses so there will be no adverse noise impact.

Prepared by ENGINEERING GEOLOGY LTD

- Me

Reviewed by

Calvin Wu (Geotechnical Engineer)

Rambod Amigh (CPEng)

File: 7546 - Tech Report 8 Oct 2014.docx

REFERENCES

- 1. Engineering Geology Ltd (2013) 'Ara Wines Proposed Vineyard Development Water Storage Ponds, Waihopai Valley, Feasibility Study Report' Ref. 7546.
- 2. GNS Science (2014) 'GNS Science Strong Motion Database' Retrieved September 2014.
- Stirling, M., McVerry G., Berryman, K., McGinty, P., Van Dissen, R., Dowrick, D., Cousins, J. and Sutherland, R. (2000) 'Probabilistic Seismic Hazard Assessment of New Zealand'. Client report 1999/53, prepared for Earthquake Commission Research Foundation, Institute of Geological and Nuclear Sciences Ltd, Lower Hutt, New Zealand.
- 4. New Zealand Society on Large Dams (2000) 'New Zealand Dam Safety Guidelines'.
- 5. New Zealand Government (2008) 'Building (Dam Safety) Regulations 2008'.
- Washington State Department of Ecology (2007) 'Dam Safety Guidelines, Technical Note 1: Dam Break Inundation Analysis and Downstream Hazard Classification' 92-55E.
- 7. MacDonald, T. C., and Langridge-Monopolis, J. (1984) 'Breaching Characteristic of Dam Failures.' Journal of Hydraulic Engineering, 110(5), pp.567-586.
- Froehlich, D.C. (1995a) 'Peak Outflow from Breached Embankment Dam.' Journal of Water Resources', Planning Management Division, American Society of Civil Engineers, 121(1), pp.90 – 97.
- Bureau of Reclamation. (1982) 'Guidelines for defining inundated areas downstream from Bureau of Reclamation Dams', Reclamation Planning Instructions No.82-11, U.S. Department of the Interior, Bureau of Reclamation, Denver, 25.
- Froehlich, D.C. (1995b) 'Embankment-dam breach Parameters revisited'. Water Resources Engineering, Proc. 1995 ASCE National Conference on Water Resources Engineering, New York, pp.887 – 891.
- Bureau of Reclamation. (1988) ' Downstream Hazard Classification Guidelines' ACER Technical Memorandum No.11, U.S. Department of the interior, Bureau of Reclamation, Denver, 57.
- 12. Reiter, P. (2000) 'International Methods of Risk Analysis, Damage Evaluation and Social Impact Studies concerning Dam-Breaks Accidents' International Seminar on the RESCDAM Project, Seinäjoki, 1-5 October 2000
- 13. Amos, P.D., Nicolson, P., Webby, M.G., and Gillon, M.D. (2004) 'Communicating Dam Safety Practices to Community for a 60km Long Canal Hydro Development in New Zealand', 'ANCOLD/NZSOLD Conference on Dams, 2004'.
- 14. Marlborough District Council (2014) 'Smart Maps, Contours' Retrieved September 2014.
- 15. Marlborough District CounField Floodwatch' Retrieved September 2014.

1 6 OCT 2014 MARLBOROUGH DISTRICT COUNCIL APPENDIX A

TEST PIT LOGS

.

File: 7546 - Tech Report 8 Oct 2014.docx

		LTC)				ST			TESTPI		.: TP1
L(Ci			ROUND: 13	 4.5m	n					Job No.: DATE: 12 TESTPIT DI	/08/201	
GEOLOGICAL UNIT	· · · · · · · · · · · · · · · · · · ·	DEPTH / RL			CONDITION	CONSISTENCY / DENSITY	SAMPLES WATER CONTENT	WATER LEVEL	SHI	RRECTED V/ EAR STRENC (kPa) Id Vane (BS 1: noulded Field	ANE GTH 377)	FIELD TESTS
Loess	Organic SILT with some fine to coarse gravel and minor clay (TOPSOIL); dark brown. Moist, low plasticity SILT with minor clay and trace fine to coarse gravel; orange brown. Very stiff, moist, low plasticity gravelly (fine to coarse) Silty, sandy (fine to coarse) GRAVEL with some cobbles and trace boulders; brownish grey. Very dense, moist, well graded; gravel cobbles and boulders consist of unweathered subrounded to rounded clasts of greywacke up to 250mm; 10-	134.5 0.2 134.3 0.4 134.1 0.5 134.0	2 TS 444 TS ×			F VSt /St-H						Bulk disturbed sample (Bulk 1) 0.5 - 3.0m
Ň	20% of clasts >100mm in size				м							Small disturbed sample (Mst 1) 1.0 - 1.1m
Formation (Glacial Outwash Gravels)	greywacke boulder up to 500mm in size	1.7 132.8 2.4 132.1		2		VD						Small disturbed sample (Mst 2) 2.0 - 2.1m
Speargrass Form		2.9	ၯၟၟၟၜၟႜၜၟၯၟၟၟႜႜႜႜႜႜႜႜႜႜႜၯၟၟၜၟႜႜႜႜႜႜႜႜႜၯၟၟႜ ႜၯၟၟၜၟႜႜႜႜႍၯၟၟ ႞ၜၟၓႜၯၟၟၜၟႜၜၯၟၜၜၜႜၓႜႜႜႜႜၯႝၜႜ	1	w			.50m, 12/08/2014				Small disturbed sample (Mst 3) 2.9 - 3.0m
	some silty clay, saturated, seepage encountered at 3.5m	<u>3.4</u> 131.1			s	34		Δ 3.5				Buik disturbed sample (Buik 2) 3.5 - 4.0m
		4.0 EOH	2 2 4 6 4 2 2 4 6 4 2 2 4 6 6 4 2 2 4 6 6 4 2 4 00 m	I	1 Mai	6 (Rlb	ORC	20 DUG DUN	H CIL	· · · · · · · · · · · · · · · · · · ·		Small disturbed sample (Mst 4)
NC	ITES:			DI	MAI	RLB RICT		DUN GED:	DLM		EX	CAVATOR: 20 tonne Excav

(

		LTI)					it i OG	PIT ;	TESTPIT SHEET 1 C Job No.:	
LO CO			ROUND: 13 M: MSL	4.2m						DATE: 12% TESTPIT DE	
GEOLOGICAL UNIT	SOIL MATERIAL DESCRIPTION	DEPTH / RL	GRAPHIC LOG	MOISTURE	CONDITION	CONSISTENCY / DENSITY	SAMPLES	WATER CONTENT	WATER LEVEL	CORRECTED VA SHEAR STRENG (kPa) Field Vane (BS 13 ORemoulded Field V 50 100 15	TH 77) FIELD TESTS /ane
	Organic SILT with some line to coarse gravel and minor clay (TOPSOIL); dark brown. Moist, low plasticity	134.2	2"TS	Ť	=	F					
Loess	SILT with some clay and trace fine to coarse gravel; orange brown. Very sliff, moist, low plasticity	0.2	1			VSI					
	some cobbles up to 100mm Sandy (fine to coarse) GRAVEL with some silt and cobbles; brownish grey. Very dense, moist, well graded; gravel and cobbles consist of unweathered subrounded to rounded clasts of greywacke up to 200mm; 10-20% of clasts >100mm in size	133.8 0.5 133.7				н		}			Bulk disturbed sample (Bul 0.5 - 3.0m
	minor boulders, clasts up to 300mm	1.2									Small disturbed sample (M
Glacial Outwash Gravels)				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					undwater Not Encountered		Small disturbed sample (M 2,0 - 2,1m
Speargrass Formation (Gla	sifty, minor sand, moist to wet, 30% of clasts >100mm	2.9				VD			Groun		Small disturbed sample (M
Spea	some clay and silt, wet	3.3									
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	v						Bulk disturbed sample (Bul 3.5 - 4.8m
	some boulders, clasts up to 400mm, saturated	4.1				、					Small disturbed sample (M 4.0 - 4.1m
		4.8									
NO	 TES:		: 4.80 m				<u>,</u>				
	REC	E	IVE	D			ł		ED: KED:	DLM	EXCAVATOR: 20 tonne Exca

an and an a star of the

1

L

í –			<b>D</b>				L.C		чт 	SHEET Job No.	1 OF 1 7546/	CENTRAL
co	CATION: 1033 - West Coast Road, Waihopai Valley, BLENHEIM ORDINATES: East 1659210.9 North 5398086.4 ID: NZTM 2000		ROUND: 13	4.1m					<b></b>		12/08/201	
GEOLOGICAL UNIT	SOIL MATERIAL DESCRIPTION	DEPTH / RL	GRAPHIC LOG	NOISTURE	CONDITION	CONSISTENCY / DENSITY	SAMPLES WATER CONTENT	(%)	WATER LEVEL	CORRECTEI SHEAR STR (kPa) ●Field Vane (B ORemoulded F 50 100	ENGTH S 1377)	FIELD TESTS
	Organic SILT with some fine to coarse gravel and minor clay (TOPSOIL); dark brown. Moist, low plasticity	{	TS TS	T	1	F	Ť	Ī	==;			
Loess	Gravelly (fine to coarse) SILT with minor day and cobbles; orange brown. Hard, moist, low plasticity; greywacke clasts up	133,9		1		н						
-	to 150mm Silty, sandy GRAVEL with minor cobbles; brownish grey. Very dense, moist, well graded; gravel and cobbles consist of subrounded to rounded greywacke clasts up to 150mm, 5% of clasts >100mm	0.4	X X+	1	v							Bulk disturbed sample (Bulk 0.5 - 2.0m
	10% of clasts >100mm, cobble up to 200mm	0.9		1								
	i i o o oi casta z roomini, cobula upi to zoomini	133.2	x · · · · · · · · · · · · · · · · · · ·	1								{ Small disturbed sample (Ms {1.0 - 1.1m
	moist to wet cobbly, minor boulders up to 300mm, 20-30% of clasts >100mm	1.3 132.6 1.4 132.7										
tion (Glacial Outwash Gravels)				2M	-92	νъ						Small disturbed sample (Me 1.9 - 2.0m Bulk disturbed sample (Bulk 2.0 - 4.0m
Speargrass Formati	wet	<u>3.0</u> 131.1		3								Small disturbed sample (Ms 3.0 - 3.1m
	some day and sill, minor sand	3.3										
				4	~				4.60m, 12/08/2014			- Small disturbed sample (Ms 3.9 - 4.0m Bulk disturbed sample (Bulk 4.0 - 4.7m
	saturated, seepage encountered at 4.6m	4.5 129.6 4.7 FOH	4.70 m		5				4.60			Small disturbed sample (Ms 4.6 - 4.7m
		EUP	ь <del>ч</del> ар III									
NOT	TES: R		CEIV			)	LOC		D; ED:	DLM RA	EX	CAVATOR: 20 tonne Excav

. .

							TE	EST			
				)				LC	)G		SHEET 1 OF 1 Job No.: 7546/CENTRAL
Ì		OJECT: ARA			L						
		CATION: 1033 - West Coast Road, Waihopai Valley, BLENHEIM ORDINATES: East 1658982.5 North 5397976.6	RL GR	IOUND: 13	34.9r	m					DATE: 13/08/2014
	GR	ID: NZTM 2000	DATU	M: MSL					·—_		TESTPIT DEPTH: 4.0m
	GEOLOGICAL UNIT	SOIL MATERIAL DESCRIPTION	DEPTH / RL	GRAPHIC LOG	DEPTH (m)	MOISTURE	CONSISTENCY /	SAMPLES		WATER LEVEL	CORRECTED VANE SHEAR STRENGTH (kPa) Field Vane (BS 1377) ORemoulded Field Vane 50 100 150
		Organic SILT with some fine to coarse gravel and minor clay (TOPSOIL); dark brown, Moist, low plasticity	134.9				F				
	Loess	Gravely (fine to coarse) SILT with minor clay and cobbles; orange brown. Hard, moist, low plasticity; greywacke clasts up to 200mm	0.2				г Н				
		Sifty, sandy GRAVEL with some cobbles and trace boulders; brownish grey. Very dense, moist, well graded; gravel, cobbles and boulders consist of subrounded to rounded greywacke clasts up to 300mm, 10-20% of clasts >100mm	134.4		1						Bulk disturbed sample (Bulk 1) 0.5 - 3.0m Small disturbed sample (Mst 1) 1.0 - 1.1m
	grass Formation (Glacial Outwash Gravels)	cobbly, some boulders, 20-30% of clasts >100mm and up to 400mm	2.0 132,9		2_	M	VĐ			<b>4</b>	Small disturbed sample (Mst 2) 2.0 - 2.1m
	Speargrass	rounded greywacke boulder up to 500mm	2.7 132.2 2.9							3.10m, 13/08/2014	
		minor day silt and sand, wet	132.0		3 -	w				3.1	2.9 - 3.0m
GS by Geroc		saturated, seepage encountered at 3.1m	<u>3.1</u> 131.8	ເສັບດີ		s			¥		Bulk disturbed sample (Bulk 2) 3.0 - 4.0m
with Core-		· · · · · · · · · · · · · · · · · · ·	4.0	\$. 	4						Small disturbed sample (Mst 4)
EGL - Hand Auger - Test Pit v3 - 18/08/2014 4:11:07 p.m Produced with Core-GS by Geroc	NOT	rES:		: 4.00 m					GGE	<b>D</b>	RECEIVED 1 6 OCT 2014 MARLBOROUGH DISTRICT COUNCIL
GL - Hand								1			: RA EXCAVATOR: 20 tonne Excavator
ល៍ [								1			

 $( \neg$ 

ł

÷ Į

i

ļ

-----

						T	ES	TF	νIT	TESTPIT No	.: TP5
·		T	)					DG		SHEET 1 OF 1	
R	OJECT: ARA		·······							Job No.: 7546/	CENTRAL
0			Round: 1 M: MSL	35.3	3 <b>m</b>					DATE: 13/08/201 TESTPIT DEPTH:	4 4.7m
			06			NCY/		ONTENT	NEL	CORRECTED VANE SHEAR STRENGTH (kPa)	
GEOLOGICAL UNIT	SOIL MATERIAL DESCRIPTION	DEPTH / RL	GRAPHIC LOG	DEPTH (m)	MOISTURE CONDITION	CONSISTE DENSITY	SAMPLES	WATER C( (%)	WATER LEVEL	<ul> <li>Field Vane (BS 1377)</li> <li>ORemoulded Field Vane</li> <li>50 100 150</li> </ul>	FiELD TESTS
	Organic SILT with some fine to coarse gravel and minor clay (TOPSOIL); dark brown. Moist, low plasticity	0.2	μ ^ω Τς ^Μ Ψ.Τς			F					
Loess	Gravelly (fine to coarse) SILT with minor day and cobbles; orange brown. Hard, moist, low plasticity; greywacke clasts up to 200mm	135.1 0.5	**** *****		4	Н					Bulk disturbed sample (Bulk 0.2 - 0.5m
	Sandy GRAVEL with some silt, minor cobbles; brownish grey. Very dense, moist, well graded; gravel and cobbles consist of subrounded to rounded greywacke clasts up to 200mm, 10% of clasts >100mm	134.9		-							Bulk disturbed sample (Bulk 0.5 - 3.0m
	1.0m - 1.3m: silty lense			¹ _							Small disturbed sample (Ms 1.0 - 1.1m
	minor boulders up to 300mm, 20% of clasts >100mm	1.3 134.0		-	м						
				-	-		M.				
/ash Gravels)				2 _							Small disturbed sample (Ms 2.0 - 2.1m
Formation (Glactal Outwash Gravels)	moist to wet	2.6		-		VD					
ss Formation					-						Small disturbed sample (Ms
Speargrass {	cobbly, minor sand and clay, 30% of clasts >100mm	3.0		э_	м-W						2.9 – 3.0m Bulk disturbed sample (Bulk 3.0 – 4.7m
	wet	3.5 131,8		-							
							a e				
ļ	some silt and clay	4.0 131.3 4.2		4 _	w				8/2014		Small disturbed sample (Ms 4.0 - 4.1m
	greywacke boulder up to 350mm	4.2		-	-				4.60m, 13/08/2014		
	saturated, seepage encountered at 4.6m	4.5 130.8 4.7 EOH	4.70 m		s				4.6		Small disturbed sample (Ms 4.6 - 4.7m
				••							
101			CEI					)GGI HECI	ED: KED:	DLM RA EX	CAVATOR: 20 tonne Excav
		1	6 OC1	F-2	2(114						

 $\bigcap$ 

DISTRICT COUNCIL

LO	OJECT: ARA CATION: 1033 - West Coast Road, Waihopai Valley, BLENHEIM ORDINATES: East 1659210.0 North 5397984.6	RL GI	ROUND; 13	J 4.6m					Job No.: 754	014
	ID: NZTM 2000 SOIL MATERIAL DESCRIPTION	DEPTH / RL	CKAPHIC LOG	MOISTURE	CONSISTENCY / DENSITY	SAMPLES	WAIER CONTENT	WATER LEVEL	TESTPIT DEPTH CORRECTED VANE SHEAR STRENGTH (kPa) ●Fleld Vane (BS 1377) ORemoulded Field Vane 50 100 150	FIELD TESTS
	Organic SILT with some fine to coarse gravel and minor clay (TOPSOIL); dark brown. Moist, low plasticity	134.6	2°TS		L					
Loess	SILT with some gravel (fine to coarse), minor clay; orange brown. Very stiff to Hard, moist, low plasticity	134.4 0.4	* * * * * * * * *		VSt-ł					
	Sandy (fine to coarse) silty GRAVEL with minor cobbles and trace boulders; brownish grey. Very dense, moist, well graded; gravel, cobbles and boulders consist of subrounded to rounded greywacke clasts up to 250mm, 20% of clasts >100mm	134.2		- M						Bulk disturbed sample (Bul 0.4 - 3.0m Small disturbed sample (M 1.3 - 1.4m
(Glacial Outwash Gravels)	moist to wet	2.0 132.6 2.5 132.1		2 - - - -	v vo					Small disturbed sample (M 2.0 - 2.1m
Speargrass Formation ((	minor clay, silt and sand, rounded greywacke boulder up to 500mm, wet, 30% of clasts >100mm	<u>3.0</u> 131.6		3						Small disturbed sample (M 2.9 - 3.0m Bulk disturbed sample (Bul 3.0 - 4.7m
	some clay and silt	3.5		- - - w						Small disturbed sounds (M
	saturated, seepage at 4.7m	4.6 130.0 4.7 EOH	ن	S	_			A.70m, 13/08/2014		Small disturbed sample (M 4.0 - 4.1m Small disturbed sample (M
10,	res: RE	ĒC	EIV	EC	)	LO	GGE	:D:	DLM	

DISTRICT COUNCIL

-				-		Т	EST	P	IT	TESTPIT No	o.: TP7
-		LTC	)				LO	G		SHEET 1 OF 1	
P	ROJECT: ARA									Job No.: 7546	D/CENTRAL
	OCATION: 1033 - West Coast Road, Waihopai Valley, BLENHEIM	_									
			NOUND: 1	136,4	lm					DATE: 13/08/20 TESTPIT DEPTH	
┢		1				_				CORRECTED VANE	
GEOLOGICAL LINET			8			CONSISTENCY / DENSITY	SAMPLES WATER CONTENT		蛘	SHEAR STRENGTH (kPa)	
	SOIL MATERIAL DESCRIPTION	DEPTH / RL	GRAPHIC LOG	DEPTH (m)	MOISTURE	ĨST	LES		WATER LEVEL	Field Vane (BS 1377) ORemoulded Field Vane	FIELD TESTS
		DEPT	BRAF	DEPT	AOIS ONE	SONS	SAME	(%	VATE	50 100 150	
F	Organic SILT with some fine to coarse gravel and minor clay	136.4	56 56	<u> </u>	20						
	(TOPSOIL); dark brown. Moist, low plasticity	0.2	₩. TS			L					
	Gravelly (fine to coarse) SILT with minor clay and cobbles; orange brown. Very stiff to hard, moist, low plasticity; greywacke	136.2	* * * * * * *								
1 0000	clasts up to 150mm	0.5	* x+ `* X 0x _ x	-		VSt-ŀ					
	Sandy (fine to coarse) silty GRAVEL with minor cobbles; brownish grey. Very dense, moist, well graded; gravel and	135.9	Q								Bulk disturbed sample (Bulk 1) 0,5 - 3.0m
	cobbles consist of subrounded to rounded greywacke clasts up to 200mm, 10% of clasts >100mm										0.0 - 0.011
			<b>.</b>	-							
$\gamma$				1							
			ؿ ؿ ؽ								
	minor boulders up to 250mm, 20% of clasts >100mm,	1.2 135,2		-	-						Small disturbed sample (Mst 1)
											1.2 - 1.3m
					м						
					-						
	_										
				•	]						
0			÷.	² _	-				ŀ		Small disturbed sample (Mst 2)
			6								2.0 - 2.1m
Ū.				-							
Cormotion (Classiat Outwash Craude)	I rounded greywacke boulder up to 350mm, 30% of clasts	2.4		-							
1010	>100mm		ې، پې ۲۰ پې								
	5			-							
Croatines		3.0		3			ber -				
0	minor sand, wet	133.4		-		1					Small disturbed sample (Mst 3) 3.0 - 3.1m
				-	W				2014		
8			ੵੑ <i>ੑ</i> ਖ਼੶ੑਫ਼ ੵੑ੶ੑੑ੶		4				3/08/		
BA Cer		3,8	10 · · 1						4.00m, 13/08/2014		
ore-GS	some clay and silt, saturated	132.6		-					4.0		
d with C	seepage encountered at 4.0m	4.0 132.4		4 -	s			<	4		
Induce			0, °, °, °,		Ĭ						4.0 - 4.1m
1. m.d		4.3									
4:12:31		EOH	. 4.30 m							R	ECEIVED
8/2014 -											
G - 18/0							•				
Test Prt v	DECEN	Di	STRICT COUNCIL								
Auger - 1								205			
Hand											YCAVATOD: 20 tonne Frencht-
<u>ਲ</u> [	MARLBORG			· · ·	·			CURI	CU:		AGAVATON, 20 IUNIE EXCAVAIOF
EGL + Hand Auger - Test P1t v3 - 18/08/2014 4.12.31 p.m Produced with Core-GS by Geroc	seepage encountered at 4.0m  RECEIV  OTES:  1 6 OCT  MARI BORC  DISTRICT CCC	132.6 4.0 132.4 4.3 EOH	0 	4	S					DI: DI:	

							ТЕ	ES	TI	PII	г		TES	STF	NT I	No.	: ТР8
	****		LTI	)					00		•	- F			1 OF		
	LO CO			ROUND: 13	36.1	m						1		E: -	7: 13/08/ DEP	/201	4 4.7m
	GEOLOGICAL UNIT	SOIL MATERIAL DESCRIPTION	DEPTH / RL	90	DEPTH (m)	MOISTURE	CONSISTENCY / DENSITY	SAMPLES	WATER CONTENT	WATER LEVEL		COR SHE Field	REC AR S (ki I Vand ioulde	TED TRE Pa) e (BS	VANI NGTI 1377 Id Van 150	E H ')	FIELD TESTS
		Organic SILT with some fine to coarse gravel and minor day (TOPSOL); dark brown. Moist, low plasticity	136.1	≗TS Į	<u> </u>		L		Ī	ĺ		:					
	Loess	SILT, minor clay; orange brown. Very sliff to Hard, moist, low plasticity	0.2	***** *****			VSt-H										
ſ.	1	Sandy (fine to coarse) silly GRAVEL with minor cobbles and trace boulders; brownish grey. Very dense, moist, well graded; gravel, cobbles and boulders consist of subrounded to rounded greywacke clasts up to 250mm, 10% of clasts >100mm	0.5		1												Bulk disturbed sample (Bulk 1) 0.5 - 3.0m
		20% of clasts >100mm and up to 300mm	7.5 134.6		-	M											Small disturbed sample (Mst 1) 1.0 - 1.1m
	n (Glacial Outwash Gravels)				2					Groundwater Not Encountered			-				Smali disturbed sample (Mst 2) 2.0 - 2.1m
	Speargrass Formation (Glacial Ou	rounded greywacke boulder up to 500mm, 30% of clasts >100mm some clay and silt, minor sand, wet	2.7 133.4 3.0 133.1	ي (ي لاينية فر	3		VD		-	Groundwater N							Small disturbed sample (Mst 3) 2.9 - 3.0m Bulk disturbed sample (Bulk 2) 3.0 - 4.7m
EGL - Hand Auger - Test Pd v3 - 18/08/2014 4.13.07 p.m Produced with Core-GS by Geroc			47		4 .	W											Small disturbed sample (Mst 4) 4.0 - 4.1m
t Pit v3 -			EOH	: 4.70 m	1		1	ыя_	1	J				. :	<u> </u>	:	1
ger - Test																	
Hand Au	NO	REC	)F	IVE	D	) 	-	L	OGG	ED:	DL	М	_	_	_		
ц В			_					C	HEC	KEL	): RA					EX	CAVATOR: 20 tonne Excavator

 $\bigcap$ 

MARLBOROUGH DISTRICT COUNCIL

1 6 OCT 2014

TESTPIT	No ·
ICOITII	NO

						Т	ESI	ΓP	IT	TESTPIT No	.: TP9
		LTC	)							SHEET 1 OF 1	
										Job No.: 7546	/CENTRAL
1	ROJECT: ARA DCATION: 1033 - West Coast Road, Waihopai Valley, BLENHEIM										
			ROUND:	135.7	7m					DATE: 13/08/20	
GI	RID: NZTM 2000	DATU	M: MSL		<u> </u>		<u>ل</u>			TESTPIT DEPTH:	4.7m
LIND			g			CONSISTENCY / DENSITY	TEAF		<b>d</b>	CORRECTED VANE SHEAR STRENGTH	
GEOLOGICAL UNIT	SOIL MATERIAL DESCRIPTION	'RL	GRAPHIC LOG	Ξ	뿺Ö	Z EN	ES D	5	WATER LEVEL	(kPa) ●Field Vane (BS 1377)	FIELD TESTS
OLOG		DEPTH / RL	APH	DEPTH (m)	MOISTURE	NSIS	MPL		TER	ORemoulded Field Vane	
ũ			/	B	불응	85	S N	3	Š	50 100 150	
	Organic SILT with some fine to coarse gravel and minor clay (TOPSOIL); dark brown. Moist, low plasticity	1	≗TS **			L					
	SILT with some gravel (fine to coarse), minor clay; orange	0.2	<u>, ⊺</u> § ** * *								
Loess	brown. Very stiff to Hard, moist, low plasticity		* ** * ** ** *			Vst-⊦					
	Sandy (fine to coarse) silly GRAVEL with minor cobbles and	0.5	* * * * * * * *								Pulle disturbed serves (Pulle 4)
	trace boulders; brownish grey. Very dense, moist, well graded;	102.2	Ç., ä	-							Bulk disturbed sample (Bulk 1) 0.5 – 3.0m
	gravel, cobbles and boulders consist of subrounded to rounded greywacke clasts up to 250mm, 20% of clasts >100mm		5°.								
			ي. ¢⊷ ق	•	1						
			6 3 /	1_	-						_
			ڡ ؠٞ؞۫؋ _ؽ								
			1 • • • • • •		1						
			ٳؠٛؿ؞ڣ								Small disturbed sample (Mst 1) 1.3 - 1.4m
					м						
				-			ă.				
				-							
			¢. ni di								
(se		2.0		2 _			<u>.</u>				Small disturbed sample (Mst 2)
n (Glacial Outwash Gravels)							r				2.0 - 2.1m
/ash											
- And Contraction of the second secon			ç, ,Ω,	-							
lacial		2.6	<i>Q</i> . a								
		133.1	Č, 8	-	1	VD					
rmati			0° ⊡ 10 • • • 10		-						
SS Fo		3.0		3							
Speargrass Formatic	some clay and silt, minor sand, wet	132.7		-							Small disturbed sample (Mst 3) 3.0 - 3.1m
Spea				-	{						0.0-0.111
			Ø. 8								
			Ç₀ ♥°°Ĕř B°•°°Å	-							
			A. S	-							
, NC			6 . D								
					w						
			й • • Д	4							
									4		Small disturbed sample (Mst 4) 4.0 - 4.1m
			й • • Л • х		-				8/201		
			ۄؙ؞ ؿڐ	-					13/0		
			0 						4.70m, 13/08/2014		
	saturated, seepage at 4.7m	4.6 131.1 4.7		-	S				4		Small disturbed sample (Mst 5)
$\vdash$			: 4.70 m			L		<b> </b>	4-1		-4.64.7m
NC	ITES: R					1	T	0			
NC	n	= (	E	V I		,		GGE		DLM	
	<u>.</u>	16	OCT	-20	)14_		СН	ECK	ED:	RA E	XCAVATOR: 20 tonne Excavator
			BUDU								

1

DISTRICT COUNCIL

	ENGINEERING GEOLOGY	/LT	D	A MARK			ST F LOG		TESTPIT No.: SHEET 1 OF 1 Job No.: 7546/C	TP10
PROJECT: AR	A 3 - West Coast Road, Waihopai Valley, BLENHEIN								,	<u> </u>
COORDINATES: GRID: NZTM 20	East 1659017.0 North 5398061.7	RL G	Round: JM: MSI		٩m				DATE: 13/08/2014 TESTPIT DEPTH:	0.3m
GEOLOGICAL UNIT	SOIL MATERIAL DESCRIPTION	DEPTH / RL	GRAPHIC LOG	DEPTH (m)	MOISTURE CONDITION	CONSISTENCY / DENSITY	SAMPLES WATER CONTENT [%]	WATER LEVEL	CORRECTED VANE SHEAR STRENGTH (kPa) •Field Vane (BS 1377) ORemoulded Field Vane 50 100 150	FIELD TESTS
Organic SIL Moist, Iow pl	T with minor gravel and trace clay; dark brown. asticity	134.	TS ــــــــــــــــــــــــــــــــــــ		м			Not Encountered		
SILT with mi plasticity	nor clay and minor gravel; brown. Moist, low		2 ** × × × * × × × * × × ×					Groundwater N		

SILT with minor clay and minor gravel; brown, Moist, low plasticity • × **∝***• × 2 × × 0 × ×. 0.3 EOH: 0.30 m

RECEIVED

,

1 6 OCT 2014 MARLBOROUGH DISTRICT COUNCIL

NOTES:	LOGGED:	DLM	
	CHECKED:	RA	EXCAVATOR: 20 tonne Excavator

ſ

(

		LTE	)	A construction		T	EST LC	T P DG	IT		EET	1 OF		TP11
	DJECT: ARA CATION: 1033 - West Coast Road, Waihopai Valley, BLENHEIM									•				
со	ORDINATES: East 1659215.9 North 5398023.1	RL GF	ROUND:	134,3	3m					DAT	Е:	13/08	/2014	
GR	ID: NZTM 2000	DATU	M: MSL							TES	TPIT	DEP	TH:	0,3m
GEOLOGICAL UNIT	SOIL MATERIAL DESCRIPTION	DEPTH / RL	GRAPHIC LOG	DEPTH (m)	MOISTURE	CONSISTENCY / DENSITY	SAMPLES	WATER CONTENT	WATER LEVEL	AR S (k d Van nould	STRE (Pa) He (BS		H D	FIELD TESTS
Topsoil	Organic SILT with minor gravel and trace clay; dark brown. Moist, low plasticity	0.2	چ ۳ ۲۵ مب مب مب مب مب ۲۵ مب ۲۵ مب		м				ater Not Encountered					
Loess	SILT with minor clay and minor gravel; brown. Moist, low plasticity	134.1 0.3	0.30 m						Groundwater					

RECEIVED

1 6 OCT 2014

MARLBOROUGH DISTRICT COUNCIL

0.3 EOH: 0.30 m

ŗ

(

NOTES:	LOGGED:	DLM	
	CHECKED;	RA	EXCAVATOR: 20 tonne Excavator

# APPENDIX B

,

# MACHINE BOREHOLE LOGS

.



.

Γ		T\							SOIL			DRII	_Lł	IOLE	EN	o.:		MBH1
1			GE	EOI	_0(	GΥ	LTD	1	LOG			SHEE	ET 1	OF 2				
ŀ	PR	OJECT: ARA										Job N		7546				
	LO	CATION: 1033 - West Coast Road, Waih	-	-	, BLEI	NHEI	M RL GROUND: 13	4.7			t F	HOLE	fini Def	ISHED: PTH: 15	: 12/ 5.0n	/08/20 1		
1		ID: NZTM 2000				<b>,</b>	DATUM: MSL	+, <b>2</b>				ORIEN			Veni	Çat		
	<u> </u>	Core Description			,		Def	ects			<del></del>	r	<del></del>	Drillin	ng &	. Test	-	1
	GEOLUGICAL UNIT	ROCK / SOIL MATERIAL DESCRIPTION	DEPTH (m)	<i>DEPTH</i> RL	GRAPHIC LOG	DEFECT LOG		DESCRIPTIO	N Dris	MOISTURE CONDITION	CONSISTENCY / DENSITY	TCR (%)	DATE / DEPTH	CORE LENGTH / TYP	SAMPLES	WATER LEVEL	25 WATER LOSS	
		Organic gravelty SILT with minor day (TOPSOIL); dark brown. Moist, low Sandy (fine to coarse) GRAVEL with minor silt; light brownish grey. Very dense; gravel consists of unweathered subanquiar to rounded clasts of		134.2 0.2 134.0								100%		<del>.</del> 8 0				
		greywacke up to 60mm silty, minor sand and cobbles, moist;	1 _	<u>1.2</u> 133.0	2	-									U			N = 50+ (C) 1.00m 14, 21 , 31, 19
		occasional unweathered greywacke clast >80mm	2		2 2							100%		<u>6</u> 6				245mm
				•								100%		09.7 P.0				N = 50+ (C) 2.00m 23, 27 130mm
			3 <u>-</u>	-												Groundwater Not Encountered		N = 50+ (C) 3.00m 11 11 12 15
			4		2							100%		90.T		roundwater N		11, 11 , 12, 16, 15, 7 390mm
	acial Outwash Gravels)	greywacke clast >100mm		4.6 129.6 4.8								100%		1.00 P.0				N = 50+ (C) 4,00m 8, 26 , 32, 18 275mm
		sandy (fine to coarse), greywacke clasts up to 40mm greywacke clasts up to 70mm	5 -	4.8 129.4 <u>5.2</u> 129.0							vo							N = 50+ (C) 5.00m 5, 12 , 15, 17, 18
	Speargrass Formation (G		6		Q.,		-					100%		1.0 0.1				355mm
	Spea	greywacke clast >80mm		<u>6.6</u> 127,6								100%		9:1 8 Q				N = 50+ (C) 6.00m 20, 24 , 23, 27 295mm
8			7_									%		2~	V			N = 50+ (C) 7.00m 14, 18 , 20, 22, 8 335mm
Core-GS by Ger	•	Gravelly SILT; orange brown; greywacke clasts up to 30mm Sifty GRAVEL (fine to coarse) with minor	6 _	7.8 126,4 8.0 126.2								100%		9.1 8.1				N = 50+ (C)
n Produced with		sand and cobles; light orange brownish grey, Very dense; gravel consists of unweathered subangular to rounded clasts of greywacke up to 70mm greywacke clast >80mm		8.6 125.6								100%		9.5 8.5				8.00m 19, 31 110mm
EGL - SOIL Log v3 - 20/08/2014 2:01:16 p.m Produced with Core-GS by Geroc			9 <u>-</u>		<u>۲</u>							100%		1.00 P.0				N ≂ 50+ (C) 9.00m 8, 24 , 45, 5 235mm
v3 - 20/08		greywacke clast >80mm	10	<u>9.6</u> 124	č							1 2		<del>-</del> "				
solt Leg	40	TES:	1 10	<b>I</b>	1		RECEI	VED	LOGGED	: D	LM	Ł	<del>ا</del>	D	RILL	LER:	PF	I RO-DRILL
- ו בפר						5	1 6 OCT	2014	CHECKE	D: R	A			D	RILL	. TYP	E: So	onic Drill Rig
							MARLBORG	JUGH										

.

,

DISTRICT COUNCIL

[-								SOIL			DRII	_Lŀ	IOLE	EN	o.:		MBH1
-		GE	EOI	_0	GY	LTD		LOG					OF 2				
	ROJECT: ARA					·····							7546 RTED				
	DCATION: 1033 - West Coast Road, Waih	opai \	/alley	BLE	NHEI	м							SHED				
		•											<b>TH:</b> 1				
C	OORDINATES:East 1659121.3 North 5398	087.1				RL GROUND: 13	4.2			I	NCLII	ITAV	ON: V	/erti	cal		
G	RID: NZTM 2000					DATUM: MSL				(	ORIEN	ITA'	10N:				
	Core Description					Def	ects						Drillir	ig &	Test	ling	
LIN		[								1			түр	[		SS	
F				8	g	DEFECT	DESCRIPTIO	N		NC	3	臣	TH /		臣	2	
00	ROCK / SOIL MATERIAL DESCRIPTION	E	붑	1 C	臣				R P	말돈	TCR (%)		ENG	SH SH	5	TER	FIELD TESTS
GEOLOGICAL UNIT		DEPTH	<i>ОЕРТН</i> RL	GRAPHIC LOG	DEFECT LOG		al Observatio	ins i	MOISTURE	ISN		DATE / DEPTH	CORE LENGTH / TYP	SAMPLES	WATER LEVEL	WATER LOSS (%)	
Ü	,	H	DEI	5					¥8	08		ă	8	Š	Ň	ងឆក	
	Silty GRAVEL (fine to coarse) with minor sand and cobbles; light orange brownish		10.0/		1	 				l'		Τ		6	7	ΠΠ	N = 50+ (C) 10,00m
	grey. Very dense; gravel consists of unweathered subangular to rounded clasts		144.4	2							~		0-		Intere		11, 39 100mm
	of greywacke up to >100mm			, ě							100%		0.1 D		UC01		penetration
		ļ		'n											ш Б		
	1	11 -		ر نیا ر نه د	1						$\vdash$	$\left  \right $			ater		N = 50+ (C)
_	sandy (fine to coarse), greywacke clasts		11.2 123.0		]				1					<b>[</b>	Groundwater Not Encountered		11.00m 22, 28
sleve	up to 70mm		]	(2) • • •		-					100%		9.5 8.0		ß		145mm penetration
Speargrass Formation (Glacial Outwash Gravets)				°.,	1				1		"						
hwas	minor sand	12	12.0 122.2	<i>য</i> ়										6.3			N = EO+(C)
a l				•	1	Ī								V			N = 50+ (C) 12.00m 18, 25 , 25, 25
Glaci				Ø,						VD	100%		1.00 PQ				300mm
ion (				• • •	1						۹ ۲						penetration
ormat		13	13.0	Ø		:											
ISS Fo	greywacke clast >100mm		121.2	Ŏ													N = 50+ (C) 13.00m
argra				ね							%001		8.5 8 Q				10 Omm penetration
Spe			13.6 120.6	×××							ē		<u>1</u> . K				
	orange brown; greywacke clasts up to S0mm	14	14.0	* * * *													
	Silty GRAVEL (fine to coarse); light orange brownish grey. Very dense; gravel		120.2		1									¢			N = 50+ (C) 14,00m
	consists of unweathered subangular to rounded clasts of greywacke up to >50mm		44.5	* *							~		9				22, 28 105mm
	2 greywacke clasts >80mm		14.5 1148 119.6	÷.	,	·					100%	1	9.5 8				penetration
	Gravelly (fine to coarse) SILT; greyish orange brown, red laminations; greywacke		14,9	× *							ļ						
$\vdash$	dasts up to 50mm greywacke clast >100mm	EOH:	15.00	$N_{2x}$	L						-				<u> </u>		N = 50+ (C)
	( <u> </u>													•			15.00m 18, 32
																	135mm penetration
}																	
											•						
															<b>.</b>		
													F	E	EC	E	IVED
													L				
													ii.	1	6	UC	T 2014
														M	١RL	BOR	IOUGH
													D	IST	RIC	πс	OUNCIL
NC	DTES:							LOGGED	. D	м				RILI	.ER:	pp	RO-DRILL
								CHECKE	D: R	A			D	RILL	. TYF	E: So	nic Drill Rig

EGL - SOIL Log v3 - 20/08/2014 2:01:16 p.m. - Produced with Core-GS by Geroc

1

Open construction and a balance base, not on the second of the contrast, low to more grander a balance base, grander a balance base, grander a base to Some grander ba	-		 							SOIL		1	DRIL	.Lŀ	IOLE	ΞN	o.:		MBH2
PROLECT:     APA     HOLE STATTED: 1309/2014       LOCATION: 1033: West Coast Road, Wellingel Valley, BLENHEIM     HOLE STATTED: 1309/2014       COCORDINATES.Elast 185/200.6 North 5907962.4     RL GROUND: 135.0       COORDINATES.Elast 185/200.6 North 5907962.4     RL GROUND: 135.0       BRU: N2TM 2000     Defects       Core Description     Defects       Core Description     Defects       Diffing ROCK / SOIL MATERIAL DESCRIPTION     B       B     Organization for control       B     Core Description       Diffing ROCK / SOIL MATERIAL DESCRIPTION     B       B     Organization for control       B     Core Description       Diffing ROCK / SOIL MATERIAL DESCRIPTION     B       B     Organization       B     Organization       D     Diffing R       B     Organization       B	.			GE	EOL	_0(	GΥ	LTD		LOG									
LCCATCN: 1033 - West Coast Road, Weihopa Valley, BLENHEIM COORDINATES.East 1855209.6 North S97962.4 RL GRUND: 135.0 DATUM: MSL COORDINATES.East 1855209.6 North S97962.4 RL GRUND: 135.0 DATUM: MSL Core Description Core De	Ļ	200																	
CORDINATESEAST 155202.8 Noth 5307862.4     RL GROUND: 13.5.0     INCLANTON: Vertical ORID: NZTM 3000       Core Description     DATUM: MSL ORID: NZTM 3000     DEFECT DESCRIPTION 8. Additional Deservations     NUMERTIATION: Vertical ORID: NZTM 3000       INCLANTON: Vertical ORID: NZTM 3000     DEFECT DESCRIPTION 8. Additional Deservations     NUMERTIATION: Vertical ORID: NZTM 3000       INCLANTON: Vertical ORID: NZTM 3000       OCARS SIGN 0000       OCARS SIGN 0000       OCARS SIGN 00000       NUMERTIATION: Vertical ORID: NZTM 3000       INCLANTON: Vertical ORID: NZTM 3000       OCARS SIGN 000000000000000000000000000000000000				opai \	/alley	BLEI	NHEI	м				ŀ	<b>IOLE</b>	FINI	SHED	: 14	/08/2		
Core Description         Defacts         Drilling & Testing           Lind 100 100 100 100 100 100 100 100 100 10				962.4					5.0			1	NCLIN	ITAJ	ON: Y				
Image: Second	F		· · · · · · · · · · · · · · · · · · ·						ects		<u> </u>					ng &	Tes	ling	
B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B	LTIN LTIN											2			۳.	Ť	Γ.	SS	
3       moderate plasticity         3       moderate plasticity         3       moderate plasticity         4       moderate plasticity         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1       10         1 </td <td>GEDI DGICAL II</td> <td></td> <td>ROCK / SOIL MATERIAL DESCRIPTION</td> <td>DEPTH (m)</td> <td>DEPTH RL</td> <td>GRAPHIC LOG</td> <td>DEFECT LOG</td> <td></td> <td></td> <td>N ns</td> <td>MOISTURE</td> <td>CONSISTENCY DENSITY</td> <td>TCR (%)</td> <td>DATE / DEPTH</td> <td>CORE LENGTH /</td> <td>SAMPLES</td> <td>WATER LEVEL</td> <td></td> <td></td>	GEDI DGICAL II		ROCK / SOIL MATERIAL DESCRIPTION	DEPTH (m)	DEPTH RL	GRAPHIC LOG	DEFECT LOG			N ns	MOISTURE	CONSISTENCY DENSITY	TCR (%)	DATE / DEPTH	CORE LENGTH /	SAMPLES	WATER LEVEL		
Silly GRAVEL (first to coarse) with mixed gray. Very drass; gravel coalsts of unvestiget ablanguation counded dasts gray. Very drass; gravel coalsts of to the top to soft ablanguation counded dasts gray. Very drass; gravel coalsts of to the top to soft ablanguation counded dasts gray. Very drass; gravel coalsts of to the top to soft ablanguation counded dasts gray. Very drass; gravel coalsts of to the top		200	moderate plasticity		0.3											Γ			
grey. Very dense; grovel consists of direct dubinguite from a point of the form of greywacks dubing in the form gre		5	Sitty GRAVEL (fine to coarse) with minor			ě,						D	100%		<u>6</u> 8				
of greywacks clast >100mm       2       200mm boulder broken up by SPT test       VD       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90 <t< td=""><td></td><td></td><td>grey. Very dense; gravel consists of unweathered subangular to rounded clasts</td><td>  .   1 _</td><td></td><td>$\overline{B}$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ļ</td><td></td><td></td><td>N = 50+ (C)</td></t<>			grey. Very dense; gravel consists of unweathered subangular to rounded clasts	.   1 _		$\overline{B}$										ļ			N = 50+ (C)
$ \begin{array}{ c c c c c } \hline \end{tabular} \\ \hline tabul$	ļ		of greywacke up to 80mm greywacke clast >100mm		10-1.0	, ě ,					-	VD	*		0.0				1.00m
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						<i>2</i> 9.,							<u>0</u>		01 01 01				
silty sandy (fine to coarse), preywacke datas up to 50mm greywacke clast > 100mm no sand, greywacke clasts up to 60mm greywacke clast > 00mm preywacke clast > 00mm greywacke clast > 00mm s.4m - 5.5m: 100mm silt layer greywacke clast > 00mm f			dense	2 -	133.0	<i>Ų</i> ٠,		, Fines washed or	1			D							N = 45 (C) 2.00m 10, 18 , 13, 11, 9,
$ \begin{array}{ c c } \hline greywacke clast > 100 mm \\ no sand, greywacke clasts up to 60mm \\ greywacke clast sup to 60mm \\ minor cobbles, greywacke clasts up to 60mm \\ 5 & 6 & 5 & 6 \\ 1300 & 1310 & 1310 \\ 1310 & 1310 & 1310 \\ 1310 & 1310 & 1310 \\ 1310 & 1310 & 1310 \\ 1310 & 1310 & 1310 \\ 1310 & 1310 & 1310 \\ 1310 & 1310 & 1310 \\ 1310 & 1310 & 1310 \\ 1310 & 1310 & 1310 \\ 1310 & 1310 & 1310 \\ 1310 & 1310 & 1310 \\ 1310 & 1310 & 1310 \\ 1310 & 1310 & 1310 \\ 1310 & 1310 & 1310 \\ 1310 & 1310 & 1310 \\ 1310 & 1310 & 1310 \\ 1300 & 1300 & 1310 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 1300 & 1300 & 1300 \\ 100 & 1300 & 1300 \\ 100 & 100 & 1300 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100$			silty, sandy (fine to coarse), greywacke clasts up to 50mm		13236	۰. ·		ĺ					100%		ទទួ	V			12 450mm
$\begin{cases} greywacke dast > 80mm \\ greywacke dasts up to 60mm \end{cases} \begin{cases} \frac{3.6}{131.1} + 3$				3													1		
$\begin{cases} greywacke dast > 80mm \\ greywacke dasts up to 60mm \end{cases} \begin{cases} \frac{3.6}{131.1} + 3$			greywacke clast >100mm		3.4			>,200mm boulder	broken up by Si	PT les!			ę				n, 14/08/2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			no sand, greywacke clasts up to 60mm		-	• • •							100%		9 <u>5</u> 0		3.90m		2
greywacke clast > 80min       6	1	ciol		4 -	13102												ען		N = 42 (C) 4,00m
greywacke clast > 80min       6	Contract of	200				, * * * *							%0		gg	V			12, 12 , 10, 10, 10, 12 450mm
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ $					1	•		:					5		÷. ш.				penetration
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ $	eladial Gladial	Clacial		) ° -	130.0	. ð .													
			5.4m - 5.5m: 100mm silt layer										100%		<del>5</del> 8	ľ			10, 9 , 19, 19, 12 325mm
		101 22	greywacke clast >80mm	6	129.2	<u>_</u>						10				8	44		N = 50+ (C)
$ \begin{array}{c} 7 \\ 7 \\ 8 \\ 8 \\ 8 \\ 8 \\ 1327.0 \\ 8 \\ 1327.0 \\ 8 \\ 1327.0 \\ 8 \\ 1327.0 \\ 8 \\ 1327.0 \\ 8 \\ 1327.0 \\ 8 \\ 1327.0 \\ 8 \\ 1327.0 \\ 8 \\ 1327.0 \\ 14 \\ 15 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$		realigia	greywacke clasts up to 60mm									VD	%		۰~		1		6,00m 7, 15 , 30, 20
8       80       200mm boulder broken up by SPT lest, fines       8       8       N = 50+ (C)         7.00m       365mm       90       90       90       90       90         8       80       90       90       90       90       90       90       90         8       80       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90	ő	ñ				, 							100		58				265mm
8         80         200mm boulder broken up by SPT lest, fines         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8 <td></td> <td></td> <td></td> <td>7 -</td> <td></td> <td>***</td> <td></td> <td>N 4000 N</td> <td></td> <td>N = 50+ (C) 7 00m</td>				7 -		***											N 4000 N		N = 50+ (C) 7 00m
8 80 127.0 \$ 0 \$ 200mm boulder broken up by SPT lest, fines N = 50+ (C'						*							%00		8.g				14, 15 , 18, 18, 14
				8_															
As if ty, greywacke clasts up to 50mm $             \begin{array}{c}             8.5 & \bullet & \bullet & \bullet \\             125.5 & \bullet & \bullet & \bullet \\             9 & 9.0 & \bullet & \bullet \\             9 & 9.0 & \bullet & \bullet \\             125.5 & \bullet & \bullet & \bullet \\             125.5 & \bullet & \bullet & \bullet \\             125.5 & \bullet & \bullet & \bullet \\             9 & 9.0 & \bullet & \bullet \\             125.5 & \bullet & \bullet $	Geroc				1	5.00			broken up by Sl	PT test, fines						P			N = 50+ (C) 8.00m 18, 23 , 30, 20
greywacke clasts up to 80mm     9     9.0     9     9.0     125.0     9     125.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0 <td< td=""><td>e-GS by</td><td></td><td>silty, greywacke clasts up to 50mm</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td></td><td>0<u>.</u>0</td><td></td><td></td><td></td><td></td></td<>	e-GS by		silty, greywacke clasts up to 50mm										100%		0 <u>.</u> 0				
Bigger     Gravely SiLT, minor day; greyish brown,     9.6     9.6     9.00m     20, 30       Corarge brown, Gravel consists of rounded     9.6     9.7     9.6     9.00m     100 mm       greywacke dasts up to 50mm     10     10.0     10.0     10.0     10.0     10.0	with Cor		greywacke clasts up to 80mm	9_		ž		, Fines washed of	ıt								-		N = 50+ (C)
Gravelly StLT, minor day; greyish brown,       125.5 *         greywacke clasts up to 50mm       10 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /	roduced					[ m.		V					%0		80				20, 30
	а-ша		orange brown, Gravel consists of rounded			<u></u>							0						
EOH: 10.00 m 10.000 m	4 2:03:00			<u> </u>	10.00	<u>× ۱</u>	Ļ	I			<u> </u>	<u>F</u>	L	I	I		<u> </u>	LLL	
13, 15, 19, 305mm 305mm 2, 2	3 - 20/08/201															v			13, 15 , 19, 27, 4 305mm penetration
NOTES: RECEIVED LOGGED: DLM DRILLER: PRO-DRILL	oll Log V	10	TES:		R	E	CE	IVED		LOGGED	): D	LM			D	RILI	LER:	P	RO-DRILL
CHECKED: RA DRILL TYPE: Sonic Drill Rig	EGL - SC				-					CHECKE	D: R	A			D	RILI	L TYI	PE: S	onic Drill Rig
MARLBOROUGH	- L_				8														

DISTRICT COUNCIL

	-					9	SOIL		I	DRII	Lŀ	IOLE	E N	o.:		MBH3
	GE	EOI	_0	GΥ	LTD		LOG					0F 1				
PROJECT: ARA LOCATION: 1033 - West Coast Road, Waih	opai \	/alley	, BLE	NHE	M	<u> </u>			1	IOLE	STA	7546 RTED SHED TH: 1	: 14/ : 14/	108/20 108/20	014	
COORDINATES:East 1659119.4 North 5397 GRID: NZTM 2000	883.9	1			RL GROUND: 13 DATUM: MSL	5.8				NCLIN						
Core Description		<del></del>	1		Def	ects		ļ			<del></del>	Drillir a	1g &	Test	_	T
TROCK / SOIL MATERIAL DESCRIPTION	DEPTH (m)	DEPTH RL	GRAPHIC LOG	DEFECT LOG		DESCRIPTIO	N ns	MOISTURE	CONSISTENCY / DENSITY	TCR (%)	DATE / DEPTH	CORE LENGTH / TYP	SAMPLES	WATER LEVEL	25 WATER LOSS 75 (%)	FIELD TESTS
Organic gravelly SILT with minor clay (TOPSOIL); dark brown. Moist		135,8 0.2 135,6	<u></u>		<u> </u>				F				Γ			
SILT with some gravel and minor clay; orange brown. Moist, low plasticity Silly GRAVEL (fine to coarse) with minor	ł	0.6 135,2	× ×						VSt-⊦	100%		9.1 0		ed		
ctay and cobbles; light orange brownish grey. Dense; gravel consists of	1	1.0 134.8												counter		N = 50+ (C)
unweathered subangular to rounded clasts of greywacke up to 50mm greywacke clast >80mm, broken up sandy (fine to coarse), silty		<u>1.4</u> 134.4			, Fines washed of	11			D	100%		00.1 DQ		Groundwater Not Encountered		1.00m 10
	2.		**************************************							100%		00.1 P.O.		Grau		N = 31 (C) 2.00m 8, 7, 7, 8, 7, 9 450mm penetration
greywacke cłast >80mm, broken up, very dense minor sand	3.	3.0 132.6 <u>3.4</u> 132.4 2.6	<b>A</b> .	*						100%		5.00 100	V			N = 50+ (C) 3.00m 13, 22 , 15, 18, 17 375mm
greywacke clast >80mm, broken up ଙ	4.	132.2 3.8 132.0	Å.	-	, Fines washed or	st										N = 50+ (C) 4.00m 16, 20 , 19, 16, 15
Image: Site of the second s	5	131,4 4,6 131,2 5,0 130,8 5,2			, 200mm boulder	broken up by Si	र्ग test			100%		9.1 PG				360mm N = 50+ (C)
		130.6	, , , , , , , , , , , , , , , , , , ,	2	ſ					100%		0.0 0.0				5.00m 24, 26 150mm
greywacke clasts >100mm, broken up bio bio bio bio bio bio bio bio bio bio	6.	6.0 129.8 6.6			, Boulder broken washed out	up by SPT lesi. F	ines		VD	100%		P.00				N = 50+ (C) 6,00m 10
silty, greywacke clasts up to 50mm	7.	129.2 7.3									-					N = 50+ (C) 7.00m 10, 18 , 17, 33
Gravelly SILT; greyish orange brown; Silty GRAVEL (fine to coarse) with minor day and cobbles; light orange brownish grey. Very dense; gravel consists of unweathered subangular to rounded clasts of greywacke up to 50mm with some	8.	128,5 128,3								100%	-	4. 8.5				370mm N = 50+ (C) 8.00m
clasts >80mm no cobbles, greywacke clasts up to 50mm	9	8.7 127.1 9.0								100%		00.1 00.7				24, 26 130mm
greywacke clasts >80mm, broken up silty, greywacke clasts up to 50mm		126,8 9.5 126.3	2		, Boulder broken washed out	up by SPT test. F	ines			100%		6.9 8.0				N ≂ 50+ (C) 9.00m 10
	EOH	10.00		} <b>F</b>		D		L	<b>I</b>	J	L.	1	U			N = 50+ (C) 10.00m 13, 13, 27, 19, 4 360mm penetration
NOTES:							LOGGED	): D	LM			D	RILI	LER:	PF	RO-DRILL
					6 OCT 201		CHECKE	D: R	A			D	RILI	L TYF	PE: So	onic Drill Rig
			Ε	M/ DIS1	ARLBOROUG	H Çil										

 $\langle \ \rangle$ 

 $\bigcap$ 

-							5	SOIL		I	DRIL	_Lŀ	IOLE	ΞN	o.:		MBH4
-		GE	EOI	-0	ĠΥ	LTD		LOG					OF 2				
L	ROJECT: ARA DCATION: 1033 - West Coast Road, Waih			, BLE	NHE		I			יי ו ו	10le 10le	STA FIN DEF	7546 RTED SHED TH: 1	: 13/ : 13/ 5.0ก	/08/20 /08/20 h	014	
	OORDINATES:East 1659006.4 North 5397 RID: NZTM 2000	964.4			<b>.</b>	RL GROUND: 13 DATUM: MSL	·		1		DRIEN						
_	Core Description		1	1		Def	ects			!			Drillir	1g & 1	Test		r <u></u>
GEOLOGICAL UNIT	ROCK / SOIL MATERIAL DESCRIPTION	DEPTH (m)	DEPTH RL	GRAPHIC LOG	DEFECT LOG		DESCRIPTIO! nal Observatio	N ns	MOISTURE	CONSISTENCY / DENSITY	TCR (%)	DATE / DEPTH	CORE LENGTH / TYP	SAMPLES	WATER LEVEL	25 WATER LOSS 75 [%]	
5	Clayey SILT; orange brown. Moist		135.5	*	İ				<u> </u>	VSt				Ť	<u> </u>		
Loess	gravelly (fine to coarse)		135,3	× * *						н	100%		8.5 0				
F	Silty GRAVEL (fine to coarse) with minor clay and cobbles; light orange brownish		134.9	× *							ļ ₽		τ.π				
	grey. Dense; gravel consists of unweathered subangular to rounded clasts of greywacke up to 80mm sandy (fine to coarse)	1 <u>-</u>	<u>1.2</u> 134.3							D	100%		1.00 PQ	V			N = 34 (C) 1.00m 6, 8 , 10, 6, 8, 10 450mm penetration
	very dense	2	<u>2.0</u> 133.5									-		V			N = 50+ (C) 2.00m
	minor sand, greywacke clast >100mm greywacke clast >100mm greywacke clast >100mm		2.4 12351 133.0 2.7 132.8								100%		7.00 PQ		ltered		13, 16 , 21, 29 300mm
	greywacke clast >100mm	3_	<u>3.3</u> 132.2		2 						100%		00.1 PQ	V	Groundwater Not Encountered		N = 50+ (C) 3.00m 11, 14 , 14, 13, 14, 9 415mm
Gravels)		4 _			•						100%		1.00 PQ	l	Ground		N = 50+ (C) 4.00m 12, 11 , 12, 14, 14, 10
Glacial Outwash Gravels)		5_	5.2 13083 130.2		•						1			U			440mm N ≈ 50+ (C) 5.00m 18, 32
Speargrass Formation (Glacit	greywacke clasts up to 70mm	6	6.0		•	, Fines washed ou	11				100%		1.00 PQ				145mm
argras	greywacke clast >100mm	- 1	129,5			V				VD							N = 50+ (C) 6.00m
Spe	Gravelly (fine to coarse) SILT; greyish orange brown. Moist; gravel consists of greywacke clasts up to 50mm greywacke clast >80mm	7	6.7 128.6 128.6	₽°~_ ×							100%		9.5 8 0				10
	GRAVEL (fine to coarse); grey. Very dense, gravel consists of rounded greywacke clasts up to 80mm		128.5			, Fines washed ou	ut				100%		1.00 P.O	-			N = 50+ (C) 7.00m 24, 26 150mm
20	silty with some send (fine to coarse)	8	<u>8.0</u> 127.5	· · · · · · · · · · · · · · · · · · ·	•						100%		1.00 PQ	V			N = 50+ (C) 8,00m 10, 15 , 15, 19, 16 360mm
	no silt and sand	9_	<u>9.0</u> 126.5			, Fines washed ou	ət				- <del>-</del>			U			N = 50+ (C) 9.00m 25, 25
	greywacke clast >80mm silty		9.4 19651 125.0			V 					100%		5.5 2				25, 25 150mm
N	DTES:	10	10.0	Ĭ"Ĩ	76	CEIVE		LOGGED	: D		1	1	D	RILI	.ER;	PI	RO-DRILL
					1	6 OCT 20	- <b>-</b>	CHECKE	<b>D</b> : R	Ą			D	RiLl	. TYF	E: S	onic Drill Rig
		_			MA		1 <b>4</b>	. –									
				D	IST	RLBOROUGI											

 $\bigcap$ 

 $\int_{M_{\rm ext}}$ 

							1 at		SOIL		1	DRIL	LH	IOLE	E N	o.:		MBH4
			GE	EOI	_00	GΥ	LTD		LOG					OF 2		-		
		OJECT: ARA												7546. RTED				
		CATION: 1033 - West Coast Road, Waihe	opai V	/alley	BLE	NHEII	м							SHED				
											ŀ	IOLE	DEP	'TH: 1	5.0n	ı		
	-	ORDINATES:East 1659006.4 North 5397	964.4				RL GROUND: 13	5.5						ON: \	/erti	cal		
	GR	RID: NZTM 2000					DATUM: MSL											
		Core Description					Def	ects				r	<del></del>	Drillin	ig &	Test	<u> </u>	
	GEOLOGICAL UNIT				σ	_					1		Ŧ	CORE LENGTH / TYP			WATER LOSS (%)	
	R	ROCK / SOIL MATERIAL DESCRIPTION	व्र	<u>س</u>	P	ğ	DEFECT	DESCRIPTIO	N	щN	ENC	TCR (%)	EPT	IGTH	ر س	۲Щ,	2	FIELD TESTS
	ğ		Ц Н	НR	PHIC	U U U	& Addition	al Observatio	ons	Ē	SISIS	TCR	2	Ē	문	ER	I I S S S	
	<u>Ö</u>		DEPTH (m)	DEPTH RL	GRAPHIC LOG	DEFECT LOG				NON	CONSISTENCY / DENSITY	-	DATE / DEPTH	CORE	SAMPLES	WATER LEVEL	N 8 F	
	-	Silty, GRAVEL (fine to coarse); light		125.5		l												N = 50+ (C)
		orange brownish grey. Very dense Gravelly SILT, minor clay; greyish orange		10.3												terec		10.00m 7, 27 , 14, 22, 14
		brown, Moist Silty GRAVEL (fine to coarse) with minor		10.5 125,0	÷,	ł						100%		<u>8</u> 5		Cour		370mm penetration
		clay; light orange brownish grey. Very dense; gravel consists of unweathered			, ,, ,											tot Er		
		subangular to rounded clasts of greywacke up to 60mm	11 -		, × •								{ }			ater h		N = 50+ (C)
_	<u>,</u>	g. e g. a de a d			• •											Groundwater Not Encountered		11,00m 8, 10 , 13, 15, 18,
)	avels				* °							100%		<u>ş</u> 5		ß		4 380mm
	Speargrass Formation (Glacial Outwash Gravels)				* • • *													penetration
	Utwa		12 _	12.2									łł					N = 50+ (C)
	icial (	minor cobbles, greywacke clast>80mm		123,3	ຳ ກໍ							ە						12.00m 9, 10 , 13, 13, 10,
	ğ				م						VD	100%		0.1 PG	ľ			14 445mm
	matio	Gravelly SILT, minor clay; greyish orange		12.8 122.7 13.0	1 + + X	1												penetration
	s Fon	brown. Moist greywacke clast >100mm	^{t3} .	13.0 192.6 122.4	20 20										C			N = 50+ (C)
	rgras			122.4	* *							Ş		_				13.00m 25, 25
	Spea				** *							100%		9.5 0				130mm penetration
					* *		:											
	ŀ	Silty GRAVEL (fine to coarse) with minor clay; light orange brownish grey. Very	14_	<u>14.0</u> 121.5														N = 50+ (C)
		dense; gravel consists of unweathered subangular to rounded clasts of			ې * *							8		<b>—</b> —				14,00m 29, 31 150mm
		greywacke up to 70mm			م							100%		5 Q				penetration
			15	15.0	* * 2		•											
			FOU	15.00	ш 1.	<b>.</b>									100			N = 50+ (C) 15,00m
															V	5		10, 10 , 12, 17, 19, 2
$\overline{\ }$																		380mm penetration
I																		
ö																		
þy Ge																		
re-GS																		
sth Co																		
v beout												R	E	ĊF	El	V	EC	)
- Prod												-						6
Ūp.m.													1	<u>6 0</u>	CT	20	)14	
2:04:0													IAF	REBC	R	DUG	ЭН	
12014												DK	STR	ICT	C	<b>SÚI</b>	NCIL	
EGL • SOIL Log v3 - 20/08/2014 2:04:00 p.m Produced with Core-GS by Geroc																		
EV 20				-				· · · · ·										
2011	NO	TES:							LOGGED	: DI	M			DF	RLL	ER:	PR	O-DRILL
פריי									CHECKE	): R/	Ą			DF	₹ILL	. TYP	E: So	nic Drill Rig
μĮ		· · · · · · · · · · · · · · · · · · ·							L									

.

 $\bigcap$ 

 $\bigcap_{i,j}$ 

# APPENDIX C

# LBORATORY TESTING RESULTS



.

File: 7546 - Tech Report 8 Oct 2014.docx

# **Civil Engineering Laboratory Services Ltd**

Lab Ref No : 14/702

Client Ref No :

PO Box 1424, Nelson Unit 3/30 Echodale Place Stoke Ph 03 547 0110 Fax 03 547 0120 Mob 027 4457071

# WATER CONTENT REPORT

Project :	Ara Wines
Location :	Waihopai Valley
Source :	Various Test Pits
Client :	Ata Wines
Contractor :	Engineering Geology Ltd
Sample descrip	otion : Various Gravels

_

Date Received :
Date sampled :
Date tested :
Sampled by :
Sample condition :
Sampling method :

28-Aug-14 Unknown 2-Sep-14 Engineering Geology Ltd Damp Unknown

Test Pit #	1	4	4	4	5
Depth (m)	2.0	1.0	2.0	3.0	1.0
Moisture Content (%)	6.3	4.4	5.3	5.6	5.5

Test Pit #	5	6	б	9
Depth (m)	2.0	1.3	3.0	1.3
Moisture Content (%)	7.7	6.7	7.3	5.0

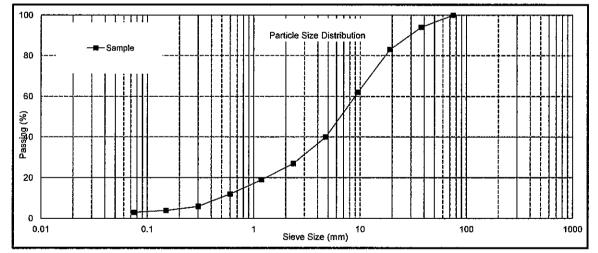
<b>Test Methods</b> Water Content	NZS 4407 : 1991 : 3.1	Not Sa		ered by IANZ endorsement
		Thi	s report may only	/ be reproduced in full
Date reported : Reported by :	2-Sep-14 Robbie Burns	ACCRED		All tests reported herein have been performed in accordance with the laboratory's scope of accreditation
Designation:	Approved IANZ Signatory Assistant Laboratory Manager		1021	Page 1 of 1
C:\Documents\Mc	isture Report	1/07/2009	Version 2	C1.1050
	N. (1997)		R	ECEIVED

1 6 OCT 2014 MARLBOROUGH DISTRICT COUNCIL Lab Ref No : 14/703

Client Ref No : -

Civil Engineering Laboratory Services Ltd PO Box 1424, Nelson Unit 3/30 Echodale Place Stoke Ph 03 547 0110 Fax 03 547 0120 Mob 027 4457071

# Order No : -


# PARTICLE SIZE DISTRIBUTION TEST REPORT

Project :	Ara Wines	Date
Location :	Waihopai Valley	Samj
Client :	Ara Wines	Samį
Contractor :	Engineering Geology Ltd	Samp
Source :	B2 TP5 0.45-3.0m	Samp

Date sampled : Sampling method : Sampled by : Sample description : Sample condition :

Unknown Unknown Engineering Geology Ltd Gravel Damp

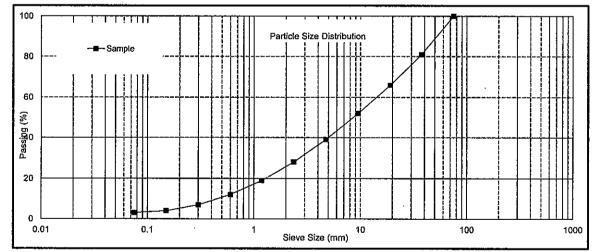
Sieve Size	Percentage Passin	g B
(mm)	Sample	
150		
75	100	· · · · · · · · · · · · · · · · · · ·
37.5	94	
19	83	
9.5	62	
4.75	40	
2.36	27	
1.18	19	
0.6	12	
0.3	6	
0.15	4	
0.075	• 3	<u> </u>
	% passing the finest sieve is obtained by difference	

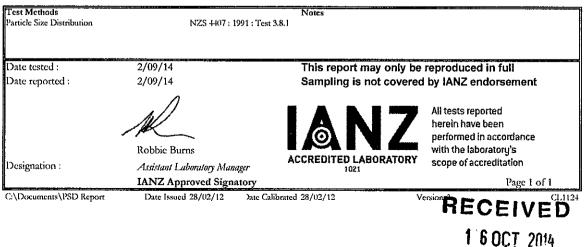


Test Methods Notes Particle Size Distribution NZS 4407 : 1991 : Test 3.8.1 This report may only be reproduced in full 2/09/14 Date tested : Date reported : 2/09/14 Sampling is not covered by IANZ endorsement All tests reported herein have been performed in accordance with the laboratory's Robbie Burns ACCREDITED LABORATORY scope of accreditation Designation : Assistant Laboratory Manager 1021 IANZ Approved Signatory Page 1 of 1 C:\Documents\PSD Report Date Issued 28/02/12 Date Calibrated 28/02/12 RECEIVED CL1124

**1 6** OCT 2014

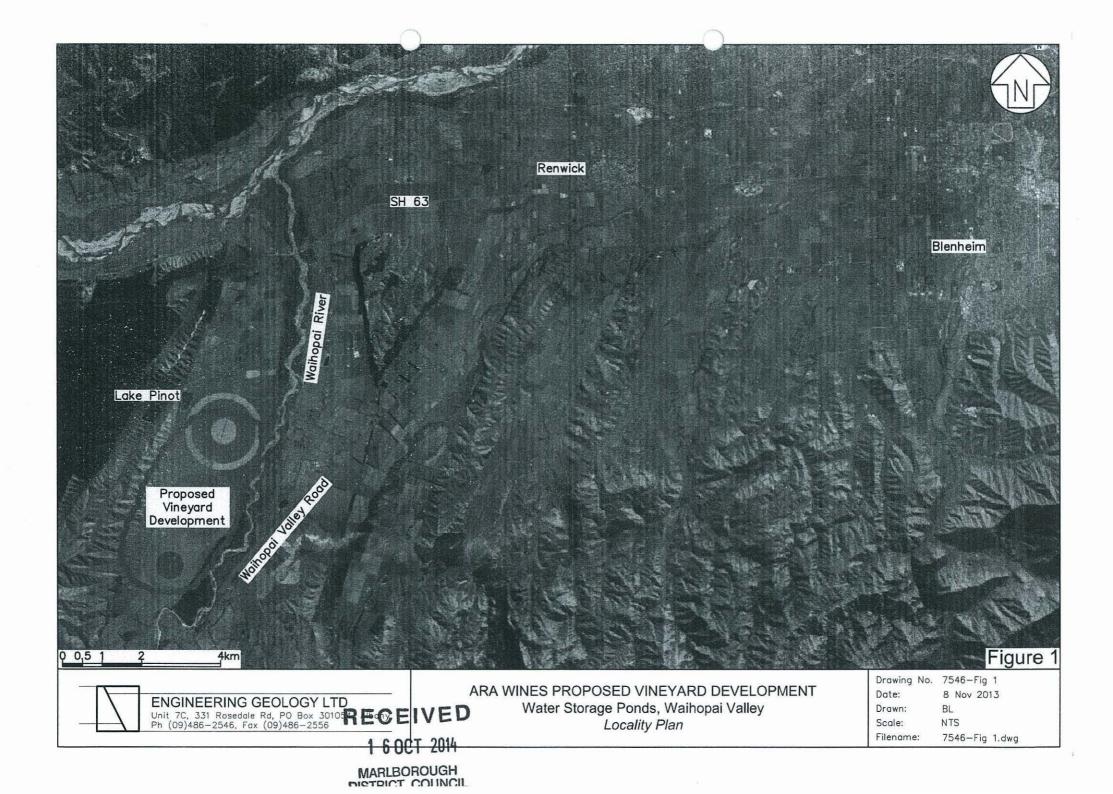
MARLBOROUGH DISTRICT COUNCIL Lab Ref No : 14/704

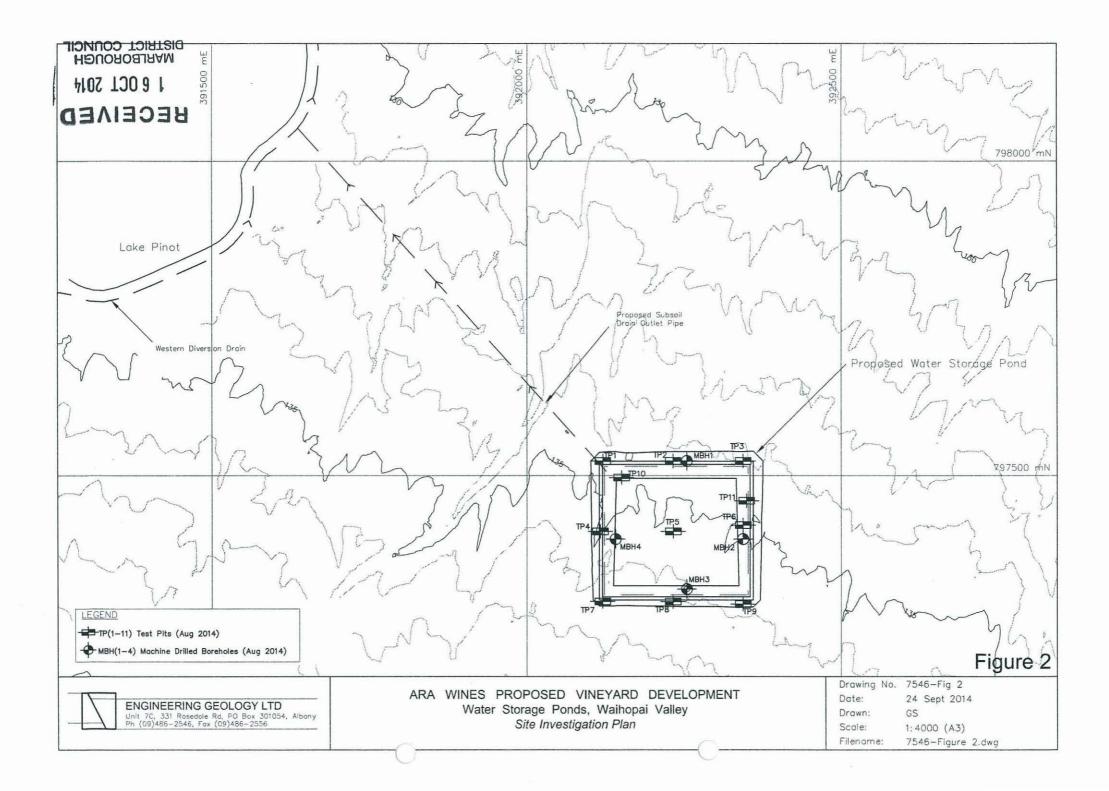

Civil Engineering Laboratory Services Ltd PO Box 1424, Nelson Unit 3/30 Echodale Place Stoke Ph 03 547 0110 Fax 03 547 0120 Mob 027 4457071

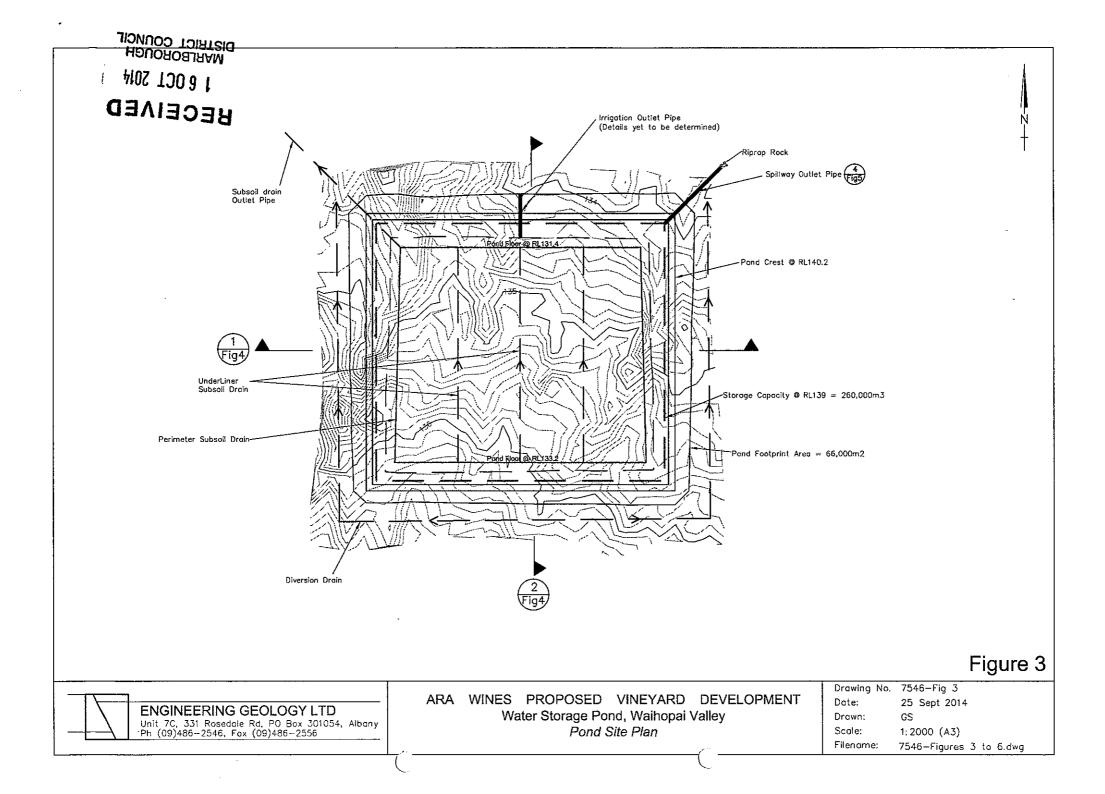

Client Ref No : -Order No : -

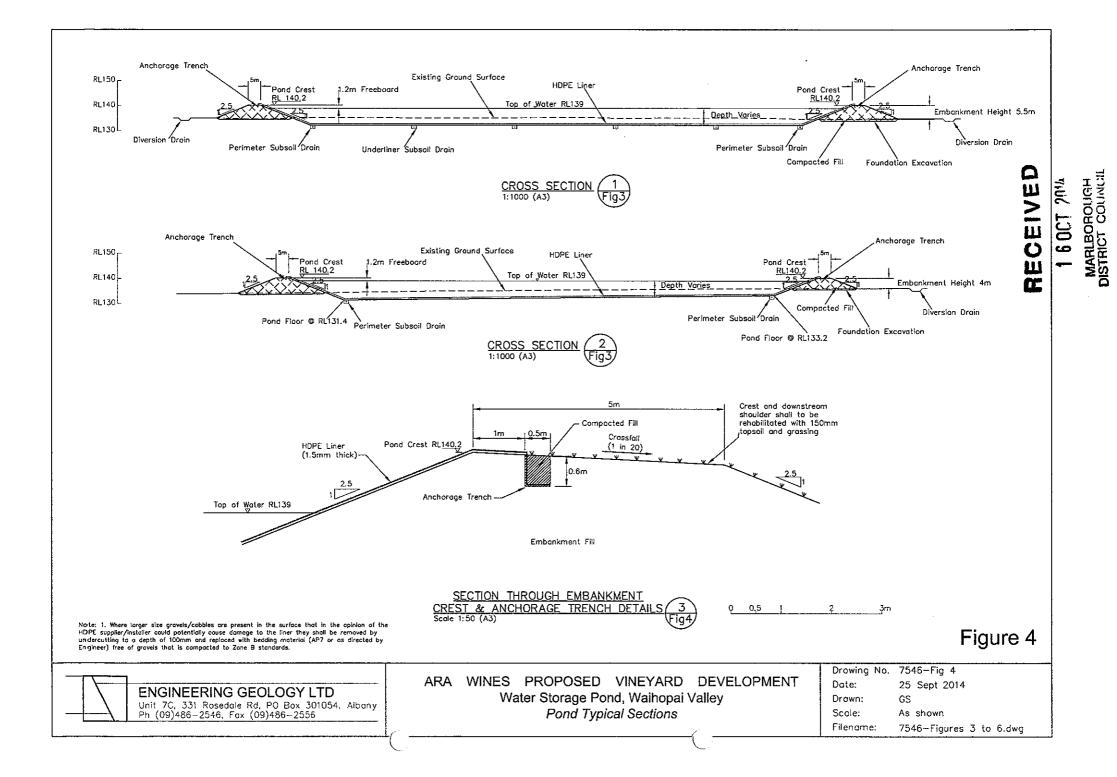
# PARTICLE SIZE DISTRIBUTION TEST REPORT

Project :	Ara Wines	Date sampled :	Unknown
Location :	Waihopai Valley	Sampling method :	Unknown
Client :	Ara Wines	Sampled by :	Engineering Geology Ltd
Contractor :	Engineering Geology Ltd	Sample description :	Gravel
Source :	B1 TP8 0.5-3.0m	Sample condition :	Damp


	Particle Size Distribution		
Sieve Size	Percentag	Percentage Passing	
(mm)	Sample		
150	-		
75	100	,	
37.5	81		
19	66		
9.5	52		
4.75	39		
2.36	28		
1.18	19		
0.6	12		
0.3	7		
0.15	4	· · · · · · · · · · · · · · · · · · ·	
0.075	3		
	% passing the finest sieve is obtained by difference		





MARLBOROUGH DISTRICT COUNCIL FIGURES 1 TO 5

