

WASTEWATER MANAGEMENT REPORT

FOR G HARRIS
MARAETAI BAY, TORY CHANNEL

Our Ref: 25083 Date: April 2012

PROJECT PLANNERS.
RESOURCE MANAGERS
CIVIL & STRUCTURAL ENGINEERS
BUILDING DESIGNERS
ENVIRONMENTAL ENGINEERS

Our Ref: 25083

19 April 2012

WASTEWATER MANAGEMENT REPORT

G HARRIS MARAETAI BAY, TORY CHANNEL

Contents

1.	Introd	uction	2
2.	Site D	Description	2
3.	Desig	n Summary	2
4.	Invest	tigation	3
5.	Desig	n	3
	5.1	General	3
	5.2	Loading	3
	5.3	Land Application System	4
	5.4	Distribution	4
	5.5	Treatment	4
	5.6	Installation, Operation and Maintenance	4
6.	Refer	rences	5
	Appe	ndix	6

Davidson Ayson House, 4 Nelson St
PO Box 256, Blenheim 7240, NZ
T: 01 579 3092/ 01 578 7028
E: service@DavidsonGroup.cv.nz
W: DavidsonGroup.co.nz

Principals
Ross David@Pi. BONGEGH
Stephen Sitz Et. MONGEL

1 INTRODUCTION

Our client requires a new on-site wastewater management system to replace an existing, failed system, serving a three bedroomed house.

We have been engaged to assess the site and confirm appropriate wastewater system details for the sustainable discharge of treated domestic wastewater. Our investigation included;

- a general visual inspection;
- excavation of test pits to evaluate the soil properties;
- · an assessment of the potential environmental effects;
- a review of previous investigations carried out in this area.

2 SITE DESCRIPTION

The property is located at the head of Maraetai Bay and is approximately 0.3380 Ha in size and comprises of a moderate to steep north east facing slope which is covered in regenerating native bush.

There is a 20 m Sounds Foreshore Reserve to Mean High Water Springs (MHWS).

View from the East

3 DESIGN SUMMARY

- Soil Description
- Ribbon Length
- Soil Category
- No. of Bedrooms
- No. of People
- Water Supply
- Wastewater Flow Allowance
- Daily Load

Our Ref: 25083

Clay loam 60 - 80 mm

4

3

6 maximum

Creek

160 I / person / day

960 I

Land Application Details

MethodDesign Irrigation Rate (DIR)

Area (min)

3 mm / day 320 m²

LPED

Pump/Chamber Details

Size (min)

1260 litres

Pump Duty

85 m head at 20 litres/min.

Treatment Type

Primary (3,000 litre & 1800 I septic tanks in series,

with filter)

4 INVESTIGATION

An investigation was carried out in accordance with ASNZS 1547:2000 "On-Site Domestic Wastewater Management" and the Marlborough District Council "Guidelines for New On-Site Wastewater Management Systems". Refer to the site notes in the Appendix.

The moderately sloping north east face is clear of surface water and suitable for a wastewater land application system. The exposure to the sun and wind is good and the vegetation is well established regenerating native bush, providing good evapotranspiration assistance.

Three test pits were excavated by a combination of spade and logged. Refer to the site notes and logs in the Appendix.

The soil profile consisted of 100mm to 200mm of topsoil overlying a light brown, moist, firm silty clay to 600 mm.

The clay loam had a ribbon length that varied from 60 to 80 mm. The ribbon lengths indicate that the soil is a Category 4 clay loam. A 100% reserve area is available.

5 <u>DESIGN</u>

5.1 General

Any land application system should be kept shallow to make maximum benefit of evapotranspiration and biological activity in the upper soil. The system should also be kept as simple as is practically possible to keep costs and maintenance to a minimum.

The fourth Schedule of the Resource Management Act requires that, where the proposed land application system is likely to have a significant adverse effect on the environment, a description of the possible alternative locations or methods of land application shall be undertaken.

In this instance, we consider that there will be no adverse effects on the environment and therefore no detailed descriptions are necessary.

5.2 Loading

The existing three bedroomed dwelling has a good creek water supply. The house also has dual flush toilet cisterns and have therefore allowed for a reduction of 20 I / person / day for an 11 / 5.5 litre system.

For design purposes, the design wastewater loading is therefore 6 persons at 160 I / person / day i.e. 960 litres / day.

The wastewater allowance can be further reduced using water saving features within the dwelling but their enforceability is difficult and they are not generally recommended for design purposes.

The design wastewater loading was based on the Marlborough District Council "Guidelines for New On-Site Wastewater Management Systems for Households with Standard Fixtures".

Our Ref: 25083

5.3 Land Application System

Overall, primary treatment to Low Pressure Distribution System (LPED) pipe work is considered to be the Best Practicable Option.

The principle of the LPED system is to discharge primary effluent through a small diameter pipe nestled within a larger pipe to evenly distribute into the topsoil for evapotranspiration uptake by the vegetation covering the area.

Using a Design Irrigation Rate (DIR) of 3 mm / day for a Category 4 soil on slopes greater than 15°, an area of 320 m² or a line length of 320 m is required.

There are no environmental constraints which require treatment to a secondary level and therefore we do not consider it necessary to use a system which is more expensive and has additional ongoing maintenance and service requirements.

5.4 Distribution

It is proposed to distribute the treated effluent to the land application field by pump dose.

Distribution by pump ensures even loading throughout the whole field. The pump chamber should be sized for a dose load of 300 litres and an emergency storage capacity equivalent to the maximum daily load of 960 litres, making a total chamber size of 1260 litres minimum. The pump duty should be about 85 m head at 20 litres/minute flow.

5.5 Treatment

The existing 3000 I septic tank was the approved size at the time it was installed.

However, current rules require a minimum 4000 I tank and we consider the best way to achieve this is to add an additional tank in series to the end of the existing. Tanks in series require slightly more volume than a single tank due to the additional solid build up the first tank. A 1800 litre second tank is considered the minimum size.

There may be stronger odour than normal from the second tank during the first few months of start up due to the lower solids loading and the slower development of non-odorous material.

The fitment of an approved effluent filter to the outlet of the second tank is required to prevent solids exiting the tank, improve treatment performance and the buffering of peak flows.

5.6 <u>Installation, Operation and Maintenance</u>

Appropriate operation and maintenance of the overall wastewater system is paramount to its performance and a service contract must be in place at the time of commissioning and remain so with the approved service agent. Records of maintenance work should be made available for Council inspection and records.

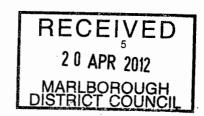
Davidson Group Ltd has carried out a site investigation and design in accordance with current codes and modern practice. However, the treatment and land application systems are biological (living) processes and modifications may have to be undertaken to the treatment and/or land application system in some circumstances, such as when there is/are;

- (a) An increase in design load
- (b) Disposal of inappropriate substances to the septic system
- (c) Poor maintenance
- (d) Poor workmanship or departure from construction drawings.

We strongly recommend that the homeowner and installer read and note the information included in the Appendix and shown on the drawings to ensure ongoing good practice and maintenance.

It is important that the septic tank (or the first tank of a dual tank system) is desludged whenever the scum (floating) and sludge (on bottom) occupy 2/3 of the volume of the tank. This may be every 5-10 years for this property.

Note that inspections by the Designer are required at the time of setting out of the new system and at completion at which time a commissioning test using fresh water will be carried out.


6 REFERENCES

- **6.1** Crites, R and Tchobanoglous, A (1998). 'Small and Decentralized Wastewater Management Systems'.
- 6.2 ARC Environment, Technical Paper No. 58, Third Edition 'On-Site Wastewater Disposal from Households and Institutions'.
- 6.3 A.S./N.Z.S. 1546.1:2008 'On-Site Domestic Wastewater Treatment Units, Part 1: Septic Tanks.
- 6.4 A.S./N.Z.S. 1547:2000 'On-Site Domestic Wastewater Management'.
- 6.5 MDC (11 July 2005) 'Guidelines for New On-Site Wastewater Management Systems'.
- **6.6** Marlborough Sounds Resource Management Plan.

DAVIDSON GROUP LTD

W L McGlynn

WLM:RM

APPENDIX

A1. Site I	nvestigation
------------	--------------

Field Assessment Report

Test Pit Logs

A2. Land Application System Design

A3. Owner & Installer Guidelines

A4. Drawing Numbers 25083 sheets;

C1 Location and Site Plans

C2 C3

Typical Septic Tank Details
Typical Pump Chamber and LPED and Distribution Details

DAVIDSON GROUP LTD		JOB NO.	25083	
WASTEWATER MANAGEMENT	Ţ.	SHEET NO	1	
FIELD ASSESSMENT REPORT		NAME	LM	
CLIENT G Harris		DATE	5 March 2012	
LOCATION Maraetai Ba	у			
REFS: MDC, 11.07.05 "Guidelines for no	ew on-site wastewater	r management system	าร"	
2 AS/NZS 1547:2000 "On Site Do	mestic Wastewater M			
		Test Pit No.		
	1	2	3	
1 Soil log (depth from surface in mm)	100 Topsoil	100 Topsoil	150 Topsoil	
	light brown, moist	light brown, moist	light brown, moist	
	stiff, sandy clay	stiff, sandy clay	stiff, sandy clay	
	loam	loam	loam	
	600	600	600	
2 Coarse Fragments (size / abundance)	none	none	none	
3 Ribbon Length (mm)	60-80	65-80	80 -100	
4 Soil Structure (Pedal Content)	high	high	high	
5 Soil Category (1 - 6)	4	4	5	
6 Site Exposure to - sun	high			
- wind	moderate			
7 Nearby Water Bodies ?	no			
- Separation Distance ?				
8 Nearby Wells ?	no			
Separation Distance ?9 Runoff To Be Controlled ?	no			
10 Ground Water To Be Controlled ?	no			
11 Any Stability Considerations ?	no			
12 Depth to Water Table	>> 2m			
13 Vegetation Cover Existing ?	young regenerating	natives		
- Proposed ?	young regenerating			
14 Gravity Head to Proposed Disposal Field	no			
15 Existing Systems Nearby - type	NA			
- proximity				
- perform'ce		<u> </u>		
16 Reserve Area Available ?	yes	100		
17 Intended Water Supply	creek			
18 Power Available?	yes			
19 Other Comments ?	will suit LPED solution	on		
	1			

On Site	Wastewater Design			
Client Grant				
Location	Maraetai Bay			

LPED Summary Sheet

Job No	25083
Sheet No	3
Name	LM
Date	5.03.12

				Carrinary Crisci	
1	Septic Tank		4000	litres	
2	Pump Chamber	Dose load Reserve Total		litres litres litres	
3	Pump Details	Head Flow	17.0 82	m litres/min.	
4	Rising Main	Туре	50 NB IDPE 50	ID	
5	Sequencing Valve	Type Ports	K RAIN 4400 4		
6	Submain`	Туре	40 NB IDPE 38	ID	
6	LPED Field		1	lines per subfield m apart	
		each Holes at Lateral dia	3.5 2 20 NB pvc	m max long from the cer mm dia m crs	ntrally fed postition
			22.55	טו	

On Site Wastewater Design Client Grant Location Maraetai Bay						
Grant						
Maraetai Bay						

Job No	25083
Sheet No	1
Name	LM
Date	5.03.12

FLOW ALLOWANCES

REFERENCES:

- 1 ARC TP # 58 Third Edition
- 2 AS/NZS 1547:2000 "On Site Domestic Wastewater Management"
- 3 ON-SITE NewZ Special Report 97/1
- 4 MDC,11 July 2005, "Guidelines for New On -Site Wastewater Systems"

Appliance / Fixture per Capita Daily Flow				Total per	
	Allowance			-	Capita
	Toilet	Washing Machine	Shower	Basin (kitchen, bathroom, laundry)	Flow (l/p/d)
1 Households with standard	60	25	75	20	120
fixtures (11 L wc, top loading washing machine)	50	20	55	15	
Blackwater only	60				
	50				
Greywater only		25	75	20	
		20	55	15	
2 Households with standard	40	20	65	20	40
water reduction fixtures (11/5.5 dual flush wc, shower flow restrictors, aerator taps and water conserving automatic washing machines)	35	15	50	15	
Blackwater only	40 35				
Greywater only	30	20 15	65 50	20 15	
Households with full water reduction facilities (6/3 dual flush wc, shower flow restrictors, aerator taps, front loading washing machine and flow/pressure control valves on all water use outlets)	20 20	15 15	55 35	20 10	
Blackwater only	20 20				
Greywater only	_0	15	55	20	
		15	35	10	
Design wastewater flow per perso Number of Bedrooms	n per day			-	160 3
Equivalent Occupancy				}	6
Design Daily Wastewater Allowand	ce			Ì	960
NOTES 1 Add 5 l/p/d for a bath	ce				900

2 Figures in [italics] are for roof water supply. Other values are for creek, community and/or bore water supply

On Site Wastewater Design					
Client	Grant				
Location	Maraetai Bay				

 Job No
 25083

 Sheet No
 2

 Name
 LM

 Date
 5.03.12

SEPTIC TANK

Daily flow
Minimum residence time required
Pump out interval required
Sludge / scum accumulation
Allowance for scum / sludge
Minimum tank size
Let tank size be
Settling volume available

Settling volume available Settling time available 960 litres 24 hours 5 years

80 litres / person / year 2400 litres

3360 litres

4000 litres (4000 litres min.)

1600 litres

40 hours OK, > min. res. time

	Edavid group	son)		Grant raetai Bay	Job No Sheet No Name Date	25083 3 LM 5.03.12
1	Design Basis	Soil Categor	y Irrigation Rate)		4 3.00	mm/day
			,	0/010		
			nd application area (A)=	Q/DIK	320.0	m ²
			vidth (WW) =	A 0 A 0 A 1	1	m
1			of LPED required (L) = .	AVVVVV	320.0 4	m
		No. of subfie				
		Lateral	NB		20 NB pvc 22.6	
			ID may langth		13.5	mm
			max length hole dia		3.5	m mm
			hole centres		2.0	mm m
			head req'd at end		2.0	m m
		Submain	NB		40 NB IDPI	
		Subman	ID		38.0	- mm
			max length		2	m
			elevation head (-ve if d	lownhill)	-2.0	m
l		Rising Main	NB	2011111111	50 NB IDPE	
İ		r tioning main	ID		50.0	mm
ĺ			max length		50	m
l			elevation head		10	m
		Sequencing				
		o o quo mamig	Туре		K RAIN 440	00
			Min. Flow rate to activa	ate	38	litres/min.
2	Design					
	Subfield	Flow variatio	n		3.0%	OK,<5%
		Head variation	on		6%	OK,<10%
		Ideal dose vo	ol		319.5	litres
		Let dose vol	be		300.0	litres
		No.of doses	/ day		3.2	
	System head losses					
		Head at end	of lateral		2.0	m
		Line losses in			0.7	m i
		Line loss in s			0.1	m
			ad along submain		-2.0	m
		Sequencing \		K RAIN 4400	2.1	m
			ng rising main		0.6	m
			ad along rising main		10.0	m
		Loss thru ber			1.0	.m
			Total Head Losses		14.5	m
•	Dumm Datelle	Tatal Uses S		0	47	
3	Pump Details		ncludes cham depth of	2	17 82	m litres/min.
		at Max Flow			02	nu es/min.
4	Chack Sequencing Vo	lve				
4	Check Sequencing Va	Min flow			38	litres/min.
		Flow			82	litres/min.
		1 1011			OK,>min flo	

DAVIDSON GROUP LTD

GUIDELINES FOR INSTALLERS OF ON-SITE DOMESTIC WASTEWATER MANAGEMENT SYSTEMS

References

A.S./N.Z.S. 1546.1:2008 'On-Site Domestic Wastewater Treatment Units, Part 1:Septic Tanks' A.S./N.Z.S. 1547:2000 'On-Site Wastewater Management'

1. GENERAL

- (a) All products and construction shall be in accordance with the relevant standards and in general the best trade practices shall prevail. If there are any questions about any aspect of the work, please contact Council in the first instance.
- (b) The Contractor shall act to protect the health and safety of staff and private persons at all times.
- (c) The Contractor must be aware of the inspection requirements of Council and/or the Engineer and the need to provide As-Built locations of the treatment and land application systems to Council and the Owner.
- (d) The Contractor should also educate the Owner about the functioning of their system, especially the maintenance requirements, and where appropriate put in place a maintenance contract for systems which rely on mechanical action in order to function properly.

2. LOCATION OF TREATMENT AND DISTRIBUTION SYSTEMS AND LAND APPLICATION AREAS

- (a) All tanks and the land application area shall be located clear of structures to avoid the undermining of foundations. In general, a minimum clearance of 3.0 metres should be adequate but if in doubt check with Council or an Engineer.
- (b) The Contractor must be aware of the required separation distances of tanks and/or the land application area to surface water (ponds, water courses and drainage paths), wells and/or boundaries.
- (c) Treatment systems should be sited with consideration for access by desludging trucks.

3. GOOD CONSTRUCTION TECHNIQUE

(a) <u>Treatment and Distribution Systems</u>

(i) When working with existing systems or carrying out maintenance tasks, measures shall be in place to ensure staff are adequately protected from contact with wastewater.

- (ii) All tanks located in areas where high seasonal groundwater levels are known to occur shall be weighted down or provided with anchorage in accordance with clause 3.2.2 of A.S./N.Z.S. 1546.1:2008.
- (iii) The Contractor shall allow to carry out any treated effluent testing required by Council. Samples should be taken once the system has been in operation for approximately three months. In a holiday home situation, testing should be done in January.
- (iv) All pump chambers shall be vented. The commissioning of pumped distribution systems shall consist of at least the following:
 - A check of pump out and emergency storage volumes (reserve capacity equivalent to the peak daily flow should be provided).
 - Three drawdown tests.
 - Testing of the operation of controls and alarms.
 - Checking of uniform flow throughout any pressurised distribution network prior to covering over.

(b) Land Application Area

The following excavation techniques shall be observed so as to minimise the risk of damage to the soil.

- (i) Plan to excavate only when the weather is fine. Pudding, where washed clay settles on the base of the trench to form a relatively impermeable layer, must be avoided.
- (ii) Avoid excavation when the soil has a moisture content above the plastic limit. This can be tested by seeing if the soil forms a "wire" when rolled between the palms.
- (iii) During wet seasons or when construction cannot be delayed until the weather becomes fine, smeared soil (smooth) surfaces should be raked to reinstate a more natural soil surface taking care to use fine tines and only at the surface.
- (iv) When excavating by machine, fit the bucket with "raker teeth" if possible, and excavate in small "bites" to minimise compaction.
- (v) Avoid compaction by keeping people off the finished trench or bed floor.

In particular for trenches and beds:

- (vi) If rain is forecast, cover any open trenches to protect them from rain damage.
- (vii) Excavate perpendicular to the line of fall or parallel to the contour levels.
- (viii) Ensure that the inverts are horizontal or sloped at not more than 1 in 200

DAVIDSON GROUP LTD

HOW TO GET THE BEST FROM YOUR ON-SITE WASTEWATER MANAGEMENT SYSTEM

Helpful Information for Homeowners/Occupiers

1. GOOD HOUSEHOLD PRACTICES

- (a) Reduce solids disposal to treatment tanks as much as possible including food scraps, fats, grease etc. Scrape all dishes before washing and do not install a waste disposal unit unless the wastewater system has been specifically designed to carry the extra load.
- (b) Do not put any of the following down sinks, drains or the toilet.
 - (i) Oil/grease from e.g. a deep fryer;
 - (ii) Stormwater and any drainage other than wastewater generated in the house;
 - (iii) Petrol, oil and other flammable/explosive substances;
 - (iv) Household, garden, garage and workshop chemicals (e.g. pesticides, paint cleaners, photographic chemicals, motor oil and trade waste);
 - (v) Disposable nappies and sanitary napkins.
- (c) In order to keep the bacteria working in the tank and in the land application area:
 - (i) Use biodegradable soaps;
 - (ii) Use a low-phosphorus detergent;
 - (iii) Use a low-sodium detergent in the dispersive soil areas;
 - (iv) Use detergents in the recommended quantities;
 - (v) Do not use powerful bleaches, whiteners, nappy soakers, spot removers and disinfectants including cold water washing products.
 - (vi) Do not put chemicals or paint down the drain.
- (d) Conserve water. Less water means a lower load on the treatment system and land application area, with ensuing improved and more reliable performance. Conservation measures include:
 - (i) Installation of water-conservation fittings such as low water use toilets, spray taps and water saving automatic washing machines;
 - (ii) Taking showers instead of baths;

- (iii) Only putting the dishwasher or washing machine on when there is a full load.
- (e) Space washing machine and dishwasher use out to avoid overloading the wastewater system. Try not to do a large amount of washing in any one day and avoid running the washing machine and dishwasher at the same time.
- (f) For the physical protection of treatment and land application systems:
 - (i) The treatment unit must be protected from vehicles;
 - (ii) Pedestrian traffic routes should not cross effluent field areas;
 - (iii) No vehicles or heavy stock should be allowed on effluent fields;
 - (iv) Deep rooting trees or shrubs should not be grown over absorption trenches or beds.

2. MAINTENANCE

(a) General

The appropriate maintenance of your treatment and land application systems will be the key to their effective and reliable performance. Please contact a drainlayer or Council if you are unsure about anything or require further advice.

(b) Septic Tanks

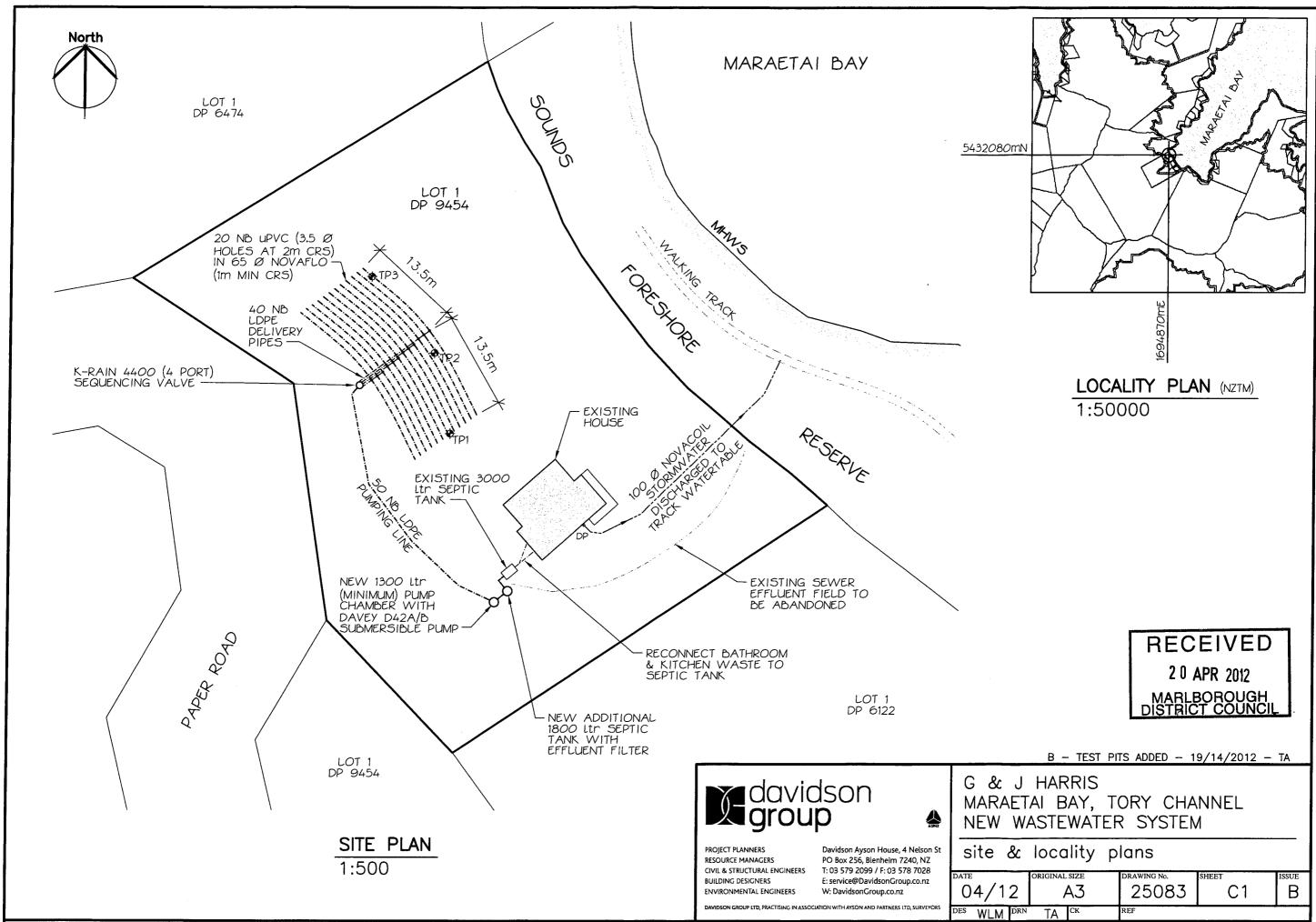
Any septic tank (primary wastewater treatment unit) will need to:

- (i) Be cleaned out regularly i.e. every three to five years or when scum and sludge occupy two thirds of the volume of the tank (or first stage of a two-stage system). All scum, sludge and septage material must be disposed of in an approved manner. Pump chambers should be cleaned out at the same time if necessary;
- (ii) Have grease traps cleaned out regularly (typically three monthly or as required);
- (iii) Keep the access cover of the septic tank exposed;
- (iv) Have any outlet filter inspected and cleaned, normally at the same time as septic tank cleaning. Remove the cartridge and rinse off with a garden hose, being careful to rinse all septage material back into the tank. It is not necessary that the cartridge be cleaned "spotless". The biomass growing on the filter aids in the pre-treatment process and should be left on the cartridge.

(c) <u>Secondary Treatment Systems</u>

Improved treatment systems, such as aerated plants or media systems, require specialist maintenance and must be looked after under a maintenance contract. Owners should ensure that they are aware of the manufacturers/suppliers recommended maintenance intervals and that a contract is in place for routine checks of mechanical components.

These systems will typically have a primary treatment stage which should be treated as in (b) above.



(d) Effluent Field

Reliable performance from your effluent field (including shallow trenches or beds, drip or LPED irrigation fields) will be aided by regular attention including one or more of the following depending on the type of system:

- (i) Keep any surface water diversion drains upslope of and around the land application area clear to reduce absorption of rainwater into trenches or beds;
- (ii) Evapotranspiration and irrigation areas should have their vegetation maintained to ensure that these areas take up nutrients with maximum efficiency;
- (iii) Ensure pumps, alarms and sequencing valves are operating correctly;
- (iv) Clean disc filters or filter screens on irrigation-dosing equipment periodically by rinsing back into the primary wastewater treatment unit;
- (v) Irrigation systems which discharge wastewater that has only been treated by a septic tank and filter (i.e. LPED systems), must be flushed through with clean water before and after any significant period of non-use.
- (vi) Regular maintenance of the treatment system (as per manufacturers recommendations), especially for aerated and media-type systems.

AIRTIGHT INSPECTION ACCESS RISER WITH SEALED LID POSITIONED **AIRTIGHT** ACCESS -OVER 500mm MIN. ACCESS OPENING FILTER ACCESS 77/7// INFLOW 120 MIN 300 OUTFLOW TO DISTRIBUTION BED 300 SCUM: APPROVED EFFLUENT FILTER TO SUPPLIERS RECOMMENDATIONS. SHROUD FILTER TO BASE OF TANK AS SHOWN WITH INLET AT HALF DEPTH STANDARD SEPTIC TANK (MIN. 1800 LITRE). REFER AS/NZS 1546.1:2008 ON-SITE DOMESTIC WASTEWATER TREATMENT UNITS, PART 1: SEPTIC TANKS"

100mm

TYPICAL CROSS SECTION

SUGGESTED OPERATION AND MAINTENANCE SEPTIC TANK

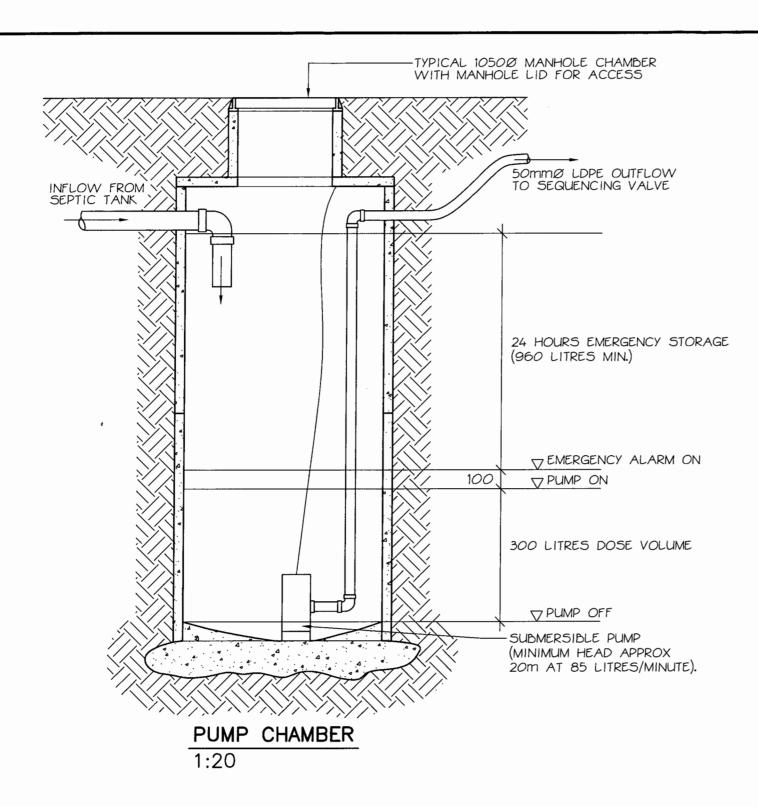
- 1.) THE INFLOWING HOUSEHOLD SEWAGE SHOULD NOT CONTAIN ANYTHING OTHER THAN HUMAN WASTE AND TOILET PAPER, AND FOOD MATERIAL SUCH AS MAY GO DOWN A KITCHEN SINK DRAIN. GARBAGE GRINDERS ARE NOT RECOMMENDED, ALTHOUGH THEY NEED NOT BE FORBIDDEN. MORE FREQUENT DESLUDGING OF THE SEPTIC TANK MAY BE NEEDED IF A GARBAGE GRINDER IS USED. NORMAL USE IN THE HOUSE OF SOAPS, DETERGENTS, BLEACHES, PLUMBING FIXTURE CLEANERS, DRAIN CLEANERS AND DISINFECTANTS WILL NOT HARM THE FUNCTIONING OF THE SEPTIC TANK OR THE SOIL ABSORPTION SYSTEM.
- 2.) PROHIBITED DISCHARGES TO THE SEPTIC TANK INCLUDE: OIL/GREASE FROM E.G. A DEEP FRIER. STORMWATER AND ANY DRAINAGE OTHER THAN SEWAGE GENERATED IN THE HOUSE. PETROL, OIL, AND OTHER FLAMMABLE/EXPLOSIVE SUBSTANCES. HOUSEHOLD, GARDEN, GARAGE, AND WORKSHOP CHEMICALS (E.G. PESTICIDES, PAINT CLEANERS, PHOTOGRAPHIC CHEMICALS, MOTOR OIL AND TRADE WASTE). DISPOSABLE NAPPIES AND SANITARY NAPKINS.
- 3.) SEPTIC TANKS NEED TO BE PUMPED (SEPTAGE REMOVED WHEN THE SLUDGE AND SCUM HAVE ACCUMULATED TO THE EXTENT THAT THE CLEAR SPACE (BETWEEN SCUM AND SLUDGE) HAS A VOLUME LESS THAN 1500 LITRES). SEPTAGE REMOVAL MAY NEED TO BE DONE AS OFTEN AS EVERY THREE YEARS BUT AT NO LONGER THAN FIVE YEAR INTERVALS.

EFFLUENT FILTER

- 1.) THE OUTLET FILTER SHOULD PREVENT DISCHARGE OF SUSPENDED PARTICLES > 3mm AND ENSURE T55 < 100a/m3.
- 2.) THE SEPTIC TANK SHOULD BE PUMPED PRIOR TO REMOVAL OF THE FILTER TO PREVENT ANY SOLIDS FROM ESCAPING TO THE TRENCHES WHEN THE CARTRIDGE IS REMOVED.
- 3.) THE FILTER SHALL BE CLEANED AT THE SAME TIME AS THE NORMAL SEPTIC TANK SERVICING (3-5 YEARS).
- 4.) REMOVE THE CARTRIDGE AND RINSE OFF WITH A GARDEN HOSE, BEING CAREFUL TO RINSE ALL SEPTAGE MATERIAL BACK INTO THE TANK. IT IS NOT NECESSARY THAT THE CARTRIDGE BE CLEANED "SPOTLESS". THE BIOMASS GROWING ON THE FILTER AIDS IN THE PRE-TREATMENT PROCESS AND SHOULD BE LEFT ON THE CARTRIDGE.

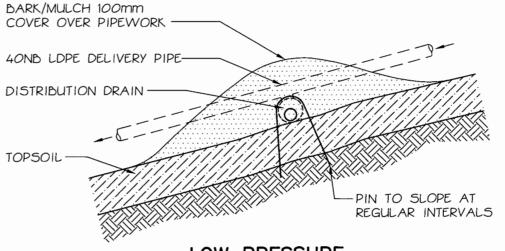
RECEIVED 20 APR 2012 MARLBORDUGH

PROJECT PLANNERS RESOURCE MANAGERS CIVIL & STRUCTURAL ENGINEERS BUILDING DESIGNERS **ENVIRONMENTAL ENGINEERS**

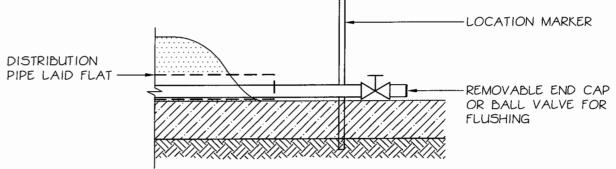

Davidson Ayson House, 4 Nelson St PO Box 256. Blenheim 7240. NZ T: 03 579 2099 / F: 03 578 7028 E: service@DavidsonGroup.co.nz W: DavidsonGroup.co.nz

G & J HARRIS MARAETAI BAY, TORY CHANNEL NEW WASTEWATER SYSTEM typical septic tank details

25083 C2 04/12 DRN B.H. CK RWD REF DES RWD


CURRENT AS OF: 27/05/09

DAVIDSON GROUP LTD. PRACTISING IN ASSOCIATION WITH AYSON AND PARTNERS LTD. SURVEYOR


NOTES:

- 1.) MATERIALS AND INSTALLATION OF WASTEWATER SYSTEM TO BE IN ACCORDANCE WITH AS/NZS 1547:2000, AS/NZS 1546.1:2008 AND THE MANUFACTURERS SPECIFICATIONS.
- 2.) PUMP CHAMBER TO BE FITTED WITH A HIGH LEVEL FLOAT SET JUST ABOVE NORMAL OPERATING LEVEL. WIRED TO AUDIO AND VISUAL ALARMS.
- 3.) PUMP CHAMBER SHOWN IS AN EXAMPLE ONLY. OTHER TYPES COULD BE APPROVED, E.G. MODIFIED SEPTIC OR WATER TANK.
- 4.) OPERATION OF DISTRIBUTION SYSTEM TO BE FULLY TESTED PRIOR TO COVERAGE OF PIPEWORK. ENGINEER TO BE PRESENT.
- 5.) FIT SCREW CAP AT ENDS OF 200 LPED FOR FLUSHING.

LOW PRESSURE EFFLUENT DISTRIBUTION (LPED) ON SURFACE

1:10

LPED END DETAIL

20NB LDPE (22.55 LINE WITH 3.50 H FACING SIDEWAYS

-20NB LDPE (22.55 ID) UPVC LPED DOSING LINE WITH 3.50 HOLES @ 2.0M CENTRES FACING SIDEWAYS EXCEPT THE END HOLES TO BE FACING UPWARD TO CONFIRM HEAD AT THE END OF THE DOSING LINES.

DISTRIBUTION DRAIN

1:5

2 0 APR 2012

MARI BOROUGH
DISTRICT COUNCIL

PROJECT PLANNERS
RESOURCE MANAGERS
CIVIL & STRUCTURAL ENGINEERS
BUILDING DESIGNERS
ENVIRONMENTAL ENGINEERS

Davidson Ayson House, 4 Nelson St PO Box 256, Blenheim 7240, NZ T: 03 579 2099 / F: 03 578 7028 E: service@DavidsonGroup.co.nz W: DavidsonGroup.co.nz

ERS W: DavidsonGroup.co.nz

G & J HARRIS

MARAETAI BAY, TORY CHANNEL

NEW WASTEWATER SYSTEM

pump chamber & distribution drain

04/12 A3 25083 C3 A

DES RWD DRN MM CK REF S:\FILES\Stddwgs\STD_A3\200\A211